• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On symmetric and radial viscosity solutions for elliptic partial differential equation.

Research Project

Project/Area Number 09640187
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKobe University of Mercantile Marine

Principal Investigator

MARUO Kenji (2000)  Kobe Univ.Mercan.Marine., Faculty of Mercan.Marine, Professor, 商船学部, 教授 (90028225)

富田 義人 (冨田 義人) (1997-1999)  神戸商船大学, 商船学部, 教授 (50031456)

Co-Investigator(Kenkyū-buntansha) INOUE Tetuo  Kobe Univ.Mercan.Marine, Faculty of Mercan.Marine, Professor, 商船学部, 教授 (50031448)
ISHII Katsuyuki  Kobe Univ.Mercan.Marine, Faculty of Mercan.Marine, Assistant Professor, 商船学部, 助教授 (40232227)
丸尾 健二  神戸商船大学, 商船学部, 教授 (90028225)
村上 隆彦  神戸商船大学, 商船学部, 教授 (40031439)
Project Period (FY) 1997 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1997: ¥700,000 (Direct Cost: ¥700,000)
KeywordsViscosity Solution / Degenerate Elliptic Equation / Existence Theorem / Uniqueness Theorem / Semilinear / Quasilinear / Radial Solution / 退化楕円型偏微分方程式 / 粘性解(viscosity solution) / standard solution / radial solution / 存在・一意性・非一意性 / unbounded solution / 最大解,最小解
Research Abstract

We consider the Dirichelet problem for a semilinear degenerte elliptic equation (DP) : -g(|x|)Δu+f(|x|, u(x))=0, and Boundary Condition where N【greater than or equal】2 and g (|x|), f(|x|, u) are continuous and the domain is a bounded ball in N-dimensional space. We discuss the problem (DP) under the following assumptions : 1)g is nonnegative. 2) f is strictly monotone for u. We frist define a standard viscosity solution by the viscosity solution such that f (|x|, u(x))=0 if g(|x|)=0. Then we can prove that the any continuous standard viscosity solution is the radial solution and unique. We add an assumption : 3)∫^<a-0>g^<-1> (s) ds=∞ or ∫_<a+0> g^<-1> (s) ds=∞ for any a : g (a)=0. Then We obtain that any continuous viscosity solution is the radial solution and uniqne. If the assumption 3) is not satisfied there exist examples such that the continuous viscosity solutions are not uniqne.
We next state the existence and uniqueness of the continuous unbounded viscosity solution in R^N. We u … More se the order of the infinite neiborhood of the solution as the boundary condition. We know that the existence or nonexistece of the solution are dependent on a kind of the order of the solution. Moreover, we get the results which the uniqueness or non-uniqueness are also dependent on a kind of the order of the solution. In this case, we assume that g, f is sufficiently smooth.
We now show the existence and uniquness of the continuous viscosity solution to quasi-semilinear degenrate elliptic problem. Here, g (|x|, u), f (|x|, u) are continuous and f is strictly monotone for u. Moreover, we assume there exists an implicite function of f=0 and the implicite function holds some smootheness. Then we can prove the existence of the continuous viscosity solution. We next state the uniquenss of the continuous viscosity solution. Assume that g (|x|, u) and f (|x|, u) hold the some relations such that f (|x|, u)/g (|x|, u) is monotone for u. Then we have the uniquness theorem and get the result this viscosity solution is the radial solution. Less

Report

(5 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] K.Maruo and T.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations,"Proc.Seventh.Tokyo Conference On Nonlinear PDE1998,. 16-21 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Maruo and T.Tomita: "Structure of unbounded viscosity solutions to semilinear degenerate elliptic equations."RIMS.Kokyuroku. 1105. (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Maruo and T.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Eliptic Equations II"Proc.ninth.Tokyo Conference On Nonlinear PDE2000,.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Maruo and T.Tomite: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations"O.J.M.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] with Y.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations"Proc.Seventh.Tokyo Conference On Nonlinear PDE1998. 16-2. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] with Y.Tomita: "Structure of unbounded viscosity solutions to semilinear degenerate elliptic equations"RIMS Kokyuroku. No.1105. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] with Y.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations II"Proc ninth Tokyo Conference On Nonlinear PDE2000. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations"O.J.M.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Maruo and T.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations II."Proc.ninth.Tokyo Conference On Nonlinear PDE 2000.. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Maruo and T.Tomita: "Radial Viscosity Solutions of the Dirichet Problem for Semiliniear Degenerate Elliptic Equations"O.J.M.. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Maruo & Y.Tomita: "Structure of unbounded viscosity solutions to semilinear degenerate elliptic equations"京都大学 数理解析研究所 講究録. No1105. (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Ishii & Y.Tomita: "Unbounded viscosity solutions of Nonlinear second order PDE'S"Advances in Mathematical Sciences and Applications. (掲載予定). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Maruo and Y.Tomita: "Radial viscosity solutions of the Dirichlet problem for semilinear degenerate elhiptic eq." Proceedings of the seventh Tokyo Conference in Nonlinear PDE. 16-21 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 丸尾健二, 冨田義人: "Radial viscosity solutions of the Dirichlet promblem for semilinear degenerate EEs" Proceedings of the Seventh Tokyo Conference in Nonlinear PDE,1998. (1998)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi