• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

THEORY OF IDEAL BOUNDARIES OF AN INFINITE NETWORK AND ITS APPLICATION

Research Project

Project/Area Number 09640188
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionSHIMANE UNIVERSITY

Principal Investigator

YAMASAKI M.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (70032935)

Co-Investigator(Kenkyū-buntansha) SUGIE J.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (40196720)
FURUMOCHI T.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (40039128)
AIKAWA H.  Shimane Univ.Mathematics Professor, 総合理工学部, 教授 (20137889)
黒岩 大史  島根大学, 総合理工学部, 助手 (40284020)
秦野 薫  島根大学, 教育学部, 教授 (40033873)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 1998: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 1997: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsInfinite networks / discrete Kuramochi function / discrete Kuramochi boundary / discrete Laplacian / Hardy's inequality / 固有値問題 / Hardyの不等式 / ヒルベルトネットワーク / 離散ラプラシアン / 倉持境界 / 離散ポテンシャル
Research Abstract

(1) Solutions of partial difference equations on an infinite network show some interesting behavior at the point at infinity of the network. The aim of this project is to characterize the point at infinity with the aid of potential theoretic tools and to study its effects for the study of the partial difference equations. We succeeded to construct a theory of discrete Kuramochi boundary comparable to the theory of discrete Martin boundary for random walks. Our theory is a discrete analogue to the theory of Kuramoch compactification of Riemann surfaces due to Kuramochi and Ohtsuka. After introducing a discrete Kuramochi function of a network, we define the Kuramochi compactification as the space on which the Kuramochi function can be extended continuously. We obtain results concerning a classification of Kuramochi boundary points and the behavior of Kuramochi potentials and SHS functions
(2) As an application of our study, we give a kind of Hardy's inequality on finite networks. With some numerical experiments, we show that our estimation of the wighted minimum eigenvalue problem for the discrete Laplacian is more effective than the usual theory when the size of the net-work becomes large.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] 村上温, 山崎稀嗣: "An introduction of Kuramochi boundary of an infinite network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 30. 57-89 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 村上温, 山崎稀嗣: "無限ネットワークの非線形倉持境界" RIMS Kokyuroku. 1016. 85-93 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Oettli, W., 山崎稀嗣: "Duality theorems on an infinite network" RIMS Kokyuroku. 981. 170-179 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 山崎稀嗣: "Extremum problems on a Hilbert network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 31. 57-71 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 生源寺亨浩, 山崎稀嗣: "Hardy's inequality on finite networks" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 32(to appear). (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 村上温, 山崎稀嗣: "Discrete Kuramochi function" Proc.3rd.Intern.Conference on Difference Equation and Applications. (to Appear). (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] A.Murakami and M.Yamasaki: "An introduction of Kuramochi boundary of an infinite network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 30. 57-89 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] W.Oettli and M.Yamasaki: "Duality theorems on an infinite network" RIMS Kokyuroku. 981. 170-179 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Yamasaki: "Extremum problems on a Hilbert network" Mem.Fac.Sci.Simane Univ.Ser.B : Mathematical Science. 31. 57-71 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Y.Shogenji and M.Yamasaki: "Hardy's inequality on finite networks" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 32 (to appear). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] A.Murakami and M.Yamasaki: "Discrete Kuramochi function" Proc.3rd.Intern.Conference on Difference Equation and Applications. (to appear.). (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 村上温, 山崎稀嗣: "An introduction of Kuramochi boundary of an infinite network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 30. 57-89 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] 村上温, 山崎稀嗣: "無限ネットワークの非線形倉持境界" RIMS Kokyuroku. 1016. 85-93 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] Oettli,W., 山崎稀嗣: "Duality theorems on an infinite network" RIMS Kokyuroku. 981. 170-179 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] 山崎稀嗣: "Extremum problems on a Hilbert network" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 31. 57-71 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 生源寺亨浩, 山崎稀嗣: "Hardy's inequality on finite networks" Mem.Fac.Sci.Shimane Univ.Ser.B : Mathematical Science. 32(to appear). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 村上温, 山崎稀嗣: "Discrete Kuramochi function" Proc.3rd.Intern.Conference on Difference Equation and Applications. (to appear). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 村上温, 山崎稀嗣: "An introduction of Kuramochi boundary of an infinite netwok" Mem.Fac.Sci.Eng.Shimane Univ. Series B : Mathematical Science. 30. 57-89 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 山崎稀嗣: "Extremum problems on a Hilbert network" Mem.Fac.Sci.Eng.Shimane Univ. Series B : Mathematical Science. 31. 57-71 (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] Oettli,W., 山崎稀嗣: "Duality theorems on an infinite network" RIMS Kokyuroku. 981. 170-179 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 山崎稀嗣: "Finite Hilbert networks" RIMS Kokyuroku. 1015. 38-49 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 村上温, 山崎稀嗣: "無限ネットワークの非線形倉持境界" RIMS Kokyuroku. 1016. 85-93 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 相川弘明: "Capacity and Hausdorff content of certain enlarged sets" Mem.Fac.Sci.Eng.Shimane Univ. Series B : Mathematical Science. 30. 1-21 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi