• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of singular solutions of nonlinear differential equations

Research Project

Project/Area Number 09640209
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionTOKYO METROPOLITAN UNIVERSITY

Principal Investigator

TAKAKUWA Shoichiro  Tokyo Metropolitan University, Graduate School of Science, Assosiate Professor, 大学院・理学研究科, 助教授 (10183435)

Co-Investigator(Kenkyū-buntansha) TODA Masahito  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助手 (80291566)
NISHIOKA Kunio  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助教授 (60101078)
HIDANO Kunio  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助手 (00285090)
OHNITA Yoshihiro  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Professor, 大学院・理学研究科, 教授 (90183764)
KURATA Kazuhiro  Granduate School of Science TOKYO METROPOLITAN UNIVERSITY,Assosiate Professor, 大学院・理学研究科, 助教授 (10186489)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 1998: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1997: ¥900,000 (Direct Cost: ¥900,000)
Keywordsdifferntial equation / singular point of solution / harmonic map / gauge theory / nonlinear problem / convergence theorem / 非線形微分方程式 / 偏微分方程式 / 大域解析学
Research Abstract

We first study harmonic maps between two Riemannin manifolds. We consider the case that the dimension n of the domain manifold is greater than 2. We prove that any subset of harmonic maps whose gradients are uniformly bounded in L^n space is compact with respect to C^* topology. As a corollary of this result we obtain the uniform estimates of first derivatives of harmonic maps in higher dimensions. This result is published in "Differential and Integral Equations". We show that the Liouville type for harmonic maps holds in higher dimensions, which is an important ingredient of the proof of the compactness theorem. By applying Liouville type theorem we obtain the estimate of the gradients of singular harmonic maps using the distance from the set of singular points. The paper of this result in in preparation and the reserch of singular harmonic maps is in progress.
Next we study the nonlinear problems in gauge theory. Using Grant-in-Aid for Scientific Reserch we invite Professor Kazuo Akutagawa (Shizuoka Univ.) to give a lecture on Seiberg-Witten theory and its application to geometry. We study the moduli space of Yang-Mills connections on a Riemannian manifold of dimension n <greater than or equal> 5 and prove the compactness of subsets of the moduli space whose curvatures are uniformly bounded in L^n space. The paper of this result is to submitted and the reserch of singular Yang-Mills connections is in progres

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] S.Takakuwa: "A compactness theorem for harmonic maps." Differential and Integral Equations. 11・1. 169-178 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Kurata: "A unique continuation theorem for Schrodinger equation with singular magnetic fields" Proceeding Amer.Math.Soc.125・3. 853-860 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Kurata: "Local boundedness and continuity for weak solutions of -(▽-ib)^2u+Vu=0" Math.Zeitshrift. 224・4. 641-635 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Hidano: "Nonlinear small data scattering for the wave equation in R^<4+1>" J.Math.Soc.Japan. 50・2. 641-635 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Nishioka: "The first hitting time and place of a hlf-line by a biharmonic pseudo process" Japanese J.Math.11・1. 641-635 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] S.Takakuwa: "A compactness theorem for harmonic maps" Differential and Integral Equation. 11, 1. 169-178 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Kurata: "A unique continuation theorem for Schrodinger equations with singular magnetic fields" Proc.A.M.S.125, 3. 853-860 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Kurata: "Local boundedness and continuity for weak solutions of -(*-ib)^2u+Vu=0" Math.Z.224, 4. 641-653 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Hidano: "Nonlinear small data scattering for the wave equation in R^<4+1>" J.Math.Soc.Japan. 50, 2. 253-292 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] K.Nishioka: "The first hitting time and place of a half-line by a biharmonic pseudo process" Japanese J.Math.23, 2. 235-280 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] S.Takakuwa: "A compactness theorem for harmonic maps" Differential and Integral Equations. 11・1. 169-178 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Kurata: "A unique continuation theorem for Schrodiuger equation with siugular magnetic fields" Proceeding Amer.Math.Soc.125・3. 853-860 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Kurata: "Local boundedness and continuity for weak solutions of - (▽-ib)^2u+Vu=0" Math.Zeitschrift. 224・4. 641-653 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Hidano: "Nonlinear small data scattering for the wave equation in R^<4+1>" J.Math.Soc.Japan. 50・2. 253-292 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Nishioka: "The first hitting time and place of a half-live by a biharmonic yseudo process" Japanese J.Math.23・2. 235-280 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] Shoichiro Takakuwa: "A compactness theorem for harmonic maps" Differential and Integral Equations. 11巻1号. 169-178 (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] Kazuhiro Kurata: "Local boundedness and continuity for weak solutions of -(∇-ib)^2u+Vu=0" Mathematische Zeitschrift. 224巻4号. 641-653 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Masahito Toda: "On the existence of H-surfaces into Riemannian manifolds" Calculus of Variations and Partial Differential Equations. 5巻・1号. 55-83 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi