• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of structure of solution to partial differential equations

Research Project

Project/Area Number 09640221
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionSophia University

Principal Investigator

OUCHI Sunao  Sophia Univ.Fac.Science and Technology, professor, 理工学部, 教授 (00087082)

Co-Investigator(Kenkyū-buntansha) GOTO Satoshi  Sophia Univ.Fac.Science and Technology, assistant, 理工学部, 助手 (00286759)
HIRATA Hitoshi  Sophia Univ.Fac.Science and Technology, assistant, 理工学部, 助手 (20266076)
YOSHINO Kunio  Sophia Univ.Fac.Science and Technology, lecturer, 理工学部, 講師 (60138378)
TAHARA Hidetoshi  Sophia Univ.Fac.Science and Technology, professor, 理工学部, 教授 (60101028)
UCHIYAMA Koichi  Sophia Univ.Fac.Science and Technology, professor, 理工学部, 教授 (20053689)
森本 光生  上智大学, 理工学部, 教授 (80053677)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1998: ¥700,000 (Direct Cost: ¥700,000)
KeywordsPartial differential equations in the complex domain / Asymptotic expansion / singularity / 複素編微分方程式
Research Abstract

885352We study partial differential equation P(z, delta^<alpha>u) = 0 in the complex do-main, where u(z) admits singularities on the complex hypersurface {z_0 = O}. The results are the following :
1. Let P(z, delta)u(z) = f(z) be a linear partial differential equation, where f(z) has also admits singularities on K.We show under some con-ditions on P(z, delta) that there is an exponent gamma > 0 such that if u(z) grows at most some exponential order near z0 0, that is, for any epsilon > 0, |u(z)| <less than or equal> C_<epsilon> exp(epsilon|z_0|^<-gamma>) and f(z) has a Gevrey type asymptotic expansion f(z) = SIGMA^^+=__0fn(z^l) * 0 in a sectorial region, where |fn(z^l)| <less than or equal> AB^nGAMMA(n/gamma+1), then u(z) has also an asymptotic expansion like f(z) as z_0 tends to 0.
2. The existence of solutios of formal power series of z_0, whose coefficients have Gevrey type estimate.
3. The uniqueness of singular solutions in some class of functions for some nonlinear partial differential equations.
We also study Davey-Stewartson equation which is one of nonlinear Schrodinger type equations and obtain the global existence of the initial value problem with small initial data and decay estimates for this equation.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] Sunao OUCHI: "growth arder and asymiptotic behaviour of singular solutions of linear partial differential equations in the camplex domain" Proceeding of the Conference Heldin Manila Philippines Springer. 229-234 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Hitoshi HIRATA: "global Existence of small Solutions to Nonlinear Schrodinger Equations" Proceedings if the Conference Held in Manila Philippines, Springer. 107-112 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Sunao OUCHI: "Singular Solutions with Asymptotic Expansion of Linear Partial Differential Equations in the complex domain" Pub.RIMS.Kyoto Univ.34. 291-311 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Hidetoshi TAHARA: "Formal power series solutions of nonlinear first order partial differential equations" FunKcialaj Ekvacioj. 41. 133-160 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Hidetoshi TAHARA: "On the unigueness theorem for nonlinear singular differential equations" J Math.Sci.Univ.Tokyo. 5. 477-506 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H.HIRATA and N.HAYASHI: "Local existence in time of the small solutions to the elliptic-hyperbolic Davey-Stewartson system in usual Sobolev space." Proceedings of the Edinburgh Mathematical Society. 40. 563-581 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] S.OUCHI: "Growth order and asymptotic behavior of singular solutions of linear partial differential equations in the complex domain." "Functional analysis and Global Analysis", Proceedings of the Conference held in Manila, Philippines, Springer-Verlag (Singapore). 229-234 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H.HIRATA: "Global Existence of Small Solutions to Nonlinear Schrodinger Equations." "Functional analysis and Global Analysis", Proceedings of the Conference held in Manila, Philippines, Springer-Verlag (Singapore). 107-112 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H.HIRATA and N.HAYASHI: "The existence of global Solutions to the Elliptic-Hyperbolic Davey-Stewartson system with small intial data." Equadiff 9 CD ROM,Masary University Brno. 131-136 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] S.OUCHI: "Singluar solutions with Asymptotic Expansion of Linear Partial Differential Equations in the complex domain." Publ.RIMS.Kyoto Univ.34. 291-311 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H.TAHARA and R.GERARD: "Formal power series solutions of nonlinear first order partial differential equations." Funkcialaj Ekvacioj. 41. 133-160 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H.TAHARA: "On the uniqueness theorem for nonlinear singular partial differential equations" J.Math.Sci.Univ.Tokyo. 5. 497-506 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] S. OUCHI: "Singular Solutions with Asymptotic Expansion of Linear Partial Differential Eguations in the Complex Domain" Pub. RIMS, Kyoto Univ,. 34. 291-311 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] H. TAHARA: "Formal power series solutions of nonlinear first order partial differential eguations" Funkcialaj EKvacioj. 41. 133-160 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] H. TAHARA: "On the unigueness theorem for non linear singular partial differential eguations" J, Math,Sci, Univ. Tokyo. 5. 477-506 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Sunao OUCHI: "Linear Partial Differentiad Equations in the complex Domain" Proceedings of the Conference Held in Manila Philippines. 229-234 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Mitsuo MORIMOTO: "Spherical Founei-Barel Transformation" Proceedings of the Conference Held in Manira Philippines. 78-87 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Hitoshi HIRATA: "Global Existence of Small Solections to Nonleniear Schijclingen Equations" Proceedings of the Conference Held in Manila Philippines. 107-112 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi