• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis and Application of Integrable Cellular Automaton

Research Project

Project/Area Number 09640245
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionThe University of Tokyo

Principal Investigator

TOKIHIRO Tetsuji  Graduate School of Mathematical Sciences, The University of Tokyo, Professor, 大学院・数理科学研究科, 教授 (10163966)

Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 1999: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 1998: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1997: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordscellular automaton / integrable system / soliton / nonautonomous KP equation / box-ball system / 可解格子模型 / Box-Ball system / 超離散化 / Yang-Baxter 関係式 / 特殊函数 / Darboux変換
Research Abstract

The main results obtained in the term are as follows :
(1) We showed that almost all integrable Cellular Automata (CAs) are obtained by ultradiscretization of the nonautonomous discrete KP equation and its reductions.
(2) We constructed discrete integrable lattices (quadrilateral lattices) using the τ functions of multi-component discrete KP equations.
(3) We showed that discrete Toda molecule equation is equivalent to the ε algorithm for convergence acceleration methods, and discussed analytically about the convergence of the methods in terms of the discrete Toda molecule equation.
(4) A box-ball system, a discrete dynamical system in which solitonic time evolution patterns of CAs are expressed as movement of balls in an infinite array of boxes, shows some combinatorial natures in the scattering of solitonic patterns. For generalized box-ball systems, we proved that they are obtained by ultra-discretization from 1-reduction of the discrete KP equation (Hirota-Miwa equation) and obtained concrete form of soliton solutions. We proved the solitonic natures and the combinatorial properties with ultradiscretization of the generalized Toda molecule equation. We also constructed the conserved quantities of the system and gave another proof for the solitonic nature. Furthermore we applied the correspondence between box-ball system and quantum integrable lattices of A type to the proof of solitonic natures. Then we constructed the most general box-ball system in which the capacity of boxes, carriers, and spedies of boxes are completely arbitrary, and gave the proof of solitonic natures of the system and constructed explicit solutions to the elementary excitations of the system.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] A. Nagai: "Ultra-discrete Toda molecule equation"Physics Letters A. 244. 383-388 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] R. Willox: "The fermionic approach to Darboux transformation"Inverse Problems. 14. 745-762 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Nagai: "The Toda molecule equation and the ε-algorithm"Mathematics of Computation. 67. 1565-1575 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Nagai: "Soliton Cellular Automaton, Toda Molecule equation and Sorting Algorithm"Physics Letters A. 255. 265-271 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] R. Willox: "Quadrilateral lattices and eigenfunctions potentials for N-component KP hierarchies"Physics Letters A. 252. 163-172 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Tokihiro: "Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization"Inverse Problems. 15. 1639-1662 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Nagai, T. Tokihiro and J. Satsuma: "The Toda molecule equations and ε-algorithm"Mathematics of Computation. 67. 1565-1575 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] R. Willox, T. Tokihiro, I. Loris and J. Satsuma: "The fermionic approach to Darboux transformations"Inverse Problems. 14. 745-762 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Nagai, T. Tokihiro and J. Satsuma: "Ultra-discrete Toda molecule equation"Phys. Lett.. A244. 383-388 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Nagai, D. Takahashi and T. Tokihiro: "Soliton cellular automaton, Toda molecule equation and sorting algorithm"Physics Letters. A255. 265-271 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] R. Willox, Y. Ohta, C. Gilson, T. Tokihiro and J. Satsuma: "Quadrilateral lattices and eigenfunction potentials for N-component KP hierarchies"Physics Letters. A252. 163-172 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Tokihiro, A. Nagai and J. Satsuma: "Proof of solitonical nature of box and ball system by Means of Inverse Ultra-discretization"Inverse Problems. 15. 1639-1662 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Tokihiro D Takahashi and J. Matsukidaira: "Box and ball system as a relization of ultradiscrete nonautonomous KP equation"J. Phys. A.. accepted for publication.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Tokihiro: "Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization"Inverse Problems. 15. 1639-1662 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Tokihiro: "Box and ball systems as a realigation of ultradiscrete nonautonomous KP equation"Journal of Physics A. 33・No3. 607-619 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] R.Willox: "The fermionic approach to Darboux transformations" Inverse Problems. 14. 745-762 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] A.Nagai: "Ultra-discrete Toda molecule equation" Physics Letters. A244. 383-388 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] R.Willox: "Darboux and binary Darboux transformations for ndKPegs." Journal of Mathematical Physics. 38. 6455-6469 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Tokihiro: "On special function solutions to nonlinear integrable equations" Physics Letters. A236. 23-29 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi