• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of recurrence property of jump type Markov processes

Research Project

Project/Area Number 09640283
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionUNIVERSITY OF THE RYUKYUS

Principal Investigator

YAMAZATO Makoto  University of the Ryukyus, Dept.of Mathematical Sciences, Professor, 理学部, 教授 (00015900)

Co-Investigator(Kenkyū-buntansha) CHEN Chunhang  University of the Ryukyus, Dept.of Mathematical Sciences, Associate Professor, 理学部, 助教授 (00264466)
HENNA Jogi  University of the Ryukyus, Dept.of Mathematical Sciences, Professor, 理学部, 教授 (80045195)
NISHISHIRAHO Toshihiko  University of the Ryukyus, Dept.of Mathematical Sciences, Professor, 理学部, 教授 (70044956)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1998: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1997: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsstorage process / OU type process / Levy measure / recurrence / OU型過程 / オルンシュタイン=ウーレンベック型過程 / ダム過程 / エルゴード型
Research Abstract

Let {A(t)} be a nonnegative subordinator without drift and r be a left continuous function on the nonnegative line to the nonnegative line with positive right limits satisfying r(O) = 0 and r(x) > 0 for x > 0. We say that a stochastic process {X(t)) is a storage process if it is determined by a stochastic differential equation
dX(t) = -r(X(t))dt + dA(t)
The following are our results : (a) A semigroup corresponding to the storage process is strongly continuous on the Basnach space consisting of bounded continuous functions on the nonnegative line vanishing at infinity if (I) an integral of 1/r(x) near infinity is divergent and (2) the total mass of the Levy measure is finite or the function r is nondecreasing. We determined the domain of the generator in the Case the total mass of the Levy measure is finite and gave a core for the generator in case the function r is nondecreasing. (b) We showed that the storage process is either positive recurrent or null recurrent or transient and obtained a sufficient condition for the process to be transient and a sufficient condition for the process to be recurrent. It should be remarked that 'we assume neither finiteness of the total mass of the Levy measure nor nondecreasingness of r. There are cases for which these two conditions can not be applied. However, we showed that in special case that the process Is a process of Ornstein-Uhlenbeck type, a part of the above mentioned sufficient condition for transience is sufficient for transience and it is also necessary.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] M.Yamazato: "On semigroups corresponding to storage processes" Ryukyu Mathematical Journal. Vol.11. 87-101 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Tomisaki-Yamazato: "Limit theorems for hitting times of 1-dimensional generalized diffusions" Nagoya Mathematical Journal. Vol.152. 1-37 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Yamazato: "Recurrence-transience criteria for storage processes" Journal of Mathematical Scienses. (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T,Nishishiraho: "Converse results for the best approximation in Banach spaces" Ryukyu Mathematical Journal. Vol.10. 75-88 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T,Nishishiraho: "Korovkin sets and mean ergodic theorems" Journal of Convex Analysis. Vol.5・1. 147-151 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] C.Chen: "Robustness properties of some forecasting methods for seasonal time series:A Monte Carlo study" International Journal of Forecasting. Vol.13・2. 269-280 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.YAMAZATO: "On semigroups corresponding to storage processes" Ryukyu Math. Journal. 11. 87-101 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.TOMISAKI and M.YAMAZATO: "Limit theorems for hitting times of 1-dimensional diffusions" Magoya Math. Journal. 152. 1-37 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.YAMAZATO: "Recurrence-transience criteria for storage processes" Journal of Mathematical Sciences. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.NISHISHIRAHO: "Converse results for the best approximation in Banach spaces" Ryukyu Math.Journal. 10. 75-88 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] T.NISHISHIRAHO: "Korovkin sets and mean ergodic theorems" Journal of Convex Analysis. 5・1. 147-151 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] C.CHEN: "Robustness properties of some forecasting methods for seasonal time series : A Monte Carlo study" International Journal of Forecasting. 13・2. 269-280 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Yamazato: "On semigroups corresponding to storage processes" Ryukyu Mathematical Journal. Vol.11. 87-101 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Tomisaki-Yamazato: "Limit theorems for hitting times of 1-dimensional generalized diffusions" Nagoya Mathematical Journal. Vol.152. 1-37 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Yamazato: "Recurrence-transience criteria for storage processes" Journal of Mathematical Sciences. (発表予定). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Nishishirako: "Converse results for the best approximation in Banach spaces" Ryukyu Mathematical Journal. Vol.10. 75-88 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Nishishirako: "Korovkin sets and mean ergodic theorems" Journal of Convex Analysis. 5・1. 147-151 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] C.Chen: "Robustness properties of some forecasting methods for seasonal time series : A Monte Carlo study" International Journal of Forecasting. 13・2. 269-280 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Yamazato: "Hitting time distributions of 1-dimensional generalized diffusion" Proceedings of SAP'96. 1. 325-338 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Tomisaki and Yamazato: "Limit theorems for hitting times of 1-dimensional generalized diffusions" Nagoya Mathematical Journal.

    • Related Report
      1997 Annual Research Report
  • [Publications] T.Nishishiraho: "Converse results for the best approximation in Banach spaces" Ryukyu Mathematical Journal. 10. 75-88 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] C.Chen: "Robustness properties of some forecasting methods for seasonal time series:a Monte Carlo Study" International Journal of Forecasting. 13・4. 269-280 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi