• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Pattern Recognition based on the Convex Quadratic Mathematical Programming

Research Project

Project/Area Number 09680360
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionJapan Advanced Institute of Science and Technology, Hokuriku

Principal Investigator

VLACH Milan  JAIST, School of Information Science, Professor, 情報科学研究科, 教授 (40291372)

Co-Investigator(Kenkyū-buntansha) HIROSHI Shimodaira  JAIST, School of Information Science, Associate Professor, 情報科学研究科, 助教授 (30206239)
Project Period (FY) 1997 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥600,000 (Direct Cost: ¥600,000)
KeywordsSupport Vector Machines / SVM / DTAK / 数理計画法 / 識別関数 / 線形識別関数
Research Abstract

The aim of this research is to exploit the recent sophisticated pattern classification method defined as an optimization problem whose mathematical formulation is given as either linear or convex quadratic programming. One of the benefit of such mathematical programming comes from the fact that global solution can be found whereas most of the other optimization problems suffer from local minima problem. The outcomes of this three-year research are summarized bellow.
1. Extension of GOP and SVM for multi-class problems : Since Mangasarian's GOP and Vapnik's SVM show superior classification performance for two-class problems, extension of these methods for multi-class problems is promising. The proposed extension showed better classification performance on UCI ML datasets than the classical Bayes classifier with normal density.
2. New miss-classification measure for SVM : Although SVM is thought as a realization of the Vapnik's SRM principle, the miss-classification measure used in the SVM … More formulation is not a good estimation of the error rate in the SRM principle. The proposed new measure gives the number of miss-classified points on the training dataset without losing the convexity of its optimization problem that assures the existence of global solutions. Experimental results showed the proposed method gives slightly better performance on the NIST handwriting digits database.
3. SVM for classification of time-series data : A new variant of SVM was developed, which can classify time series pattern such as acoustic speech data. The proposed classifier named Chain Support Vector Classifier (CSVC) consists of several SV classifiers connected in cascade. The CSVC employs an iterative learning algorithm based on Viterbi-like segmentation and the one used for the conventional SVM, though convergence has not been proven yet expect for a special case. Preliminary experiments of on-line hand-writing digits recognition showed comparable classification performance of CSVC with the single-Gaussian hidden Markov models (HMM). Besides the CSVC, another model called DTAK-SVM (dynamic time-alignment kernel SVM) was also developed. Less

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (27 results)

All Other

All Publications (27 results)

  • [Publications] 下平博: "Support Vector Machinesによる複数カテゴリの識別"電子情報通信学会技術研究報告、パターン認識・メディア理解. PRMU98-36. 1-8 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 下平博: "Support Vector Machineの複数クラス分類問題における定式化"画像の認識・理解シンポジウム(MIRU'98). II. 151-156 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi Shimodaira: "Support Vector Machines for Multi-Class Pattern Classification Problems"Proc. of International Conference on Operations Research 98. 68-68 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi Shimodaira: "Modified Minimum Classification Error Learning and Its Application to Neural Networks"Springer, Advances in Pattern Recognition. LNCS1451. 785-794 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jun Rokui: "Improving the Generalization Performance of the Minimum Classification Error Learning and Its Application to Neural Networks"The Fifth International Conference on Neural Information Processing (ICONIP'98). 63-67 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jun Rokui: "Multistage building learning based on misclassification measure"Proc. of ICANN99. 221-226 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 中井浩一: "Supprt Vector Machineによる時系列パターンの認識"電子情報通信学会技術報告パターン認識とメディア理解(PRMU). 99-167. 15-20 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jaroslav Ramik: "Generalized Quasiconcavity and Compromise Solution Generalized"Optimization, Modeling And Algoritmus. 13. 296-304 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H.Shimodaira: "Multi-class Classification by Support Vector Machines (in Japanese)"IEICE Technical report. PRMU98-36. 1-8 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H.Shimodaira: "Formulation of Support Vector Machines for Multi-class Classification Problems (in Japanese)"Meeting on Image Recognition and Understanding 1998 (MIRU1998). Vol.2. 151-156 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi Shimodaira: "Support Vector Machines for Multi-Class Pattern Classification Problems"Proc.of International Conference on Operations Research. 98. 68 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi Shimodaira: "Modified Minimum Classification Error Learning and Its Application to Neural Networks"Springer, Advances in Pattern Recognition, LNCS. 1451. 785-794 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jun Rokui: "Improving the Generalization Performance of the Minimum Classification Error Learning and Its Application to Neural Networks"The Fifth International Conference on Neural Information Processing (ICONIP'98). 63-67 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jun Rokui: "Multistage building learning based on misclassification measure"ICANN99. 221-226 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Koichi Nakai: "Time-series Pattern Recognition by Support Vector Machines"IEICE Technical report. PRMU99-167. 15-20 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jaroslav Ramik: "Generalized Quasiconcavity and Compromise Solutions"Optimization, Modeling And Algoritmus. Vol.13. 296-304 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Ken'ichi Noma: "Sequential-Pattern Recognition by Support Vector Machines Using Dynamic Time-Alignment Kernels"IEICE Technical report PRMU2000-128. 63-68 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 中井 浩一: "Support Vector Machineによる時系列パターンの認識"電子情報通信学会 技術報告 パターン認識とメディア理解(PRMU). 99-167. 15-20 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Jaroslav Ramik: "Generalized Quasiconcavity and Compromise Solution Generalized"Optimization,Modeling And Algoritmus. 13. 296-304 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] 下平 博: "Support Vector Machinesによる複数カテゴリの識別" 電子情報通信学会 技術研究報告、パターン認識・メディア理解. PRMU98-36. 1-8 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 下平 博: "Support Vector Machineの複数クラス分類問題における定式化" 画像の認識・理解シンポジウム(MIRU'98). II. 151-156 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Hiroshi Shimodaira: "Support Vector Machines for Multi-Class Pattern Classification Problems" Proc.of International Conference on Operations Research 98. 68-68 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Hiroshi Shimodaira: "Modified Minimum Classification Error Learning and Its Application to Neural Net-works" Springer, Advances in Pattern Recognition. LNCS 1451. 785-794 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Jun Rokui: "Improving the Generalization Performance of the Minimum Classification Error Learning and Its Application to Neural Networks" Proc.of The Fifth International Conference on Neural Information Processing. la-C-3 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 佐藤弘一: "複数クラス分類問題における数理計画法による識別関数の設計" 平成9年度電気関係学会北陸支部連合大会 講演論文集. 345 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 六井淳: "最小分類誤り識別学習法の高精度化" 平成9年度電気関係学会北陸支部連合会大会 講演論文集. (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 佐藤弘一: "Supporr Vector Machineにおける複数クラス識別問題の定式化" 統計数理研究所 研究集会「最適化:モデリングとアルゴリズム」. (1998)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi