Project/Area Number |
09740057
|
Research Category |
Grant-in-Aid for Encouragement of Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Geometry
|
Research Institution | Osaka University |
Principal Investigator |
後藤 竜司 大阪大学, 大学院・理学研究科, 講師 (30252571)
|
Project Period (FY) |
1997 – 1998
|
Project Status |
Completed (Fiscal Year 1998)
|
Budget Amount *help |
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1998: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1997: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | 超ケーラー多様体 / Symplectic多様体 / 対数的コホモロジー |
Research Abstract |
論文"On hyper-Kahler manifolds of type A_ifty and D_infty"に置いて筆者はA,D型と呼ばれる4次元の超ケーラー多様体を組織的に構成した。これは、Anderson-Lebum-Kronheimerによる予想に答えたものとなっている。また、超ケーラー多様体を使った3次元多様体の不変量の結果をpreprint"Rozansky-Witten invariants and log Symplectic manifolds"にまとめた。これはRozansky-Wittenによって提唱された超ケーラー多様体による、3次元多様体の不変量を対数的な極を持つSymplectic多様体に拡張したものとなっている。これにより、従来から、懸案であった、モノポールのモジュライ空間に対して、この不変量を構成できることが示される。その後、超ひも理論で開発された、アイデアを超ケーラー多様体にたいして適用し、いくつか結果を得た。例えば、超ケーラー多様体内のラグランジアン部分多様体にsupportを持つ、層のモジュライ空間にはまた、自然な超ケーラー多様体の構造が入ることなどを示した。
|
Report
(2 results)
Research Products
(2 results)