• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

スカラー曲率の方程式と楕円形特異境界値問題

Research Project

Project/Area Number 09740065
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionOsaka City University

Principal Investigator

加藤 信  大阪市立大学, 理学部, 助教授 (10243354)

Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1998: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1997: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsスカラー曲率 / 共形変形
Research Abstract

本研究は「リーマン多様体上に与えられた滑らかな関数が、どのような条件を満たすとき、その共形類内の適当なリーマン計量によりそのスカラー曲率として実現され得るか?」と言う幾何学上の問題を解析的に定式化した、いわゆるスカラー曲率の方程式を特別な場合として含む、あるクラスの非線形二階楕円型偏微分方程式に関する研究である。本年度の研究では、前年度に引き続き、これまで主としてユークリッド空間の余次元一のなめらかな境界を持つ有界領域について研究されて来た楕円型特異境界値問題、すなわち境界条件として無限大を与えた問題の一般化とも捉えることの出来る、コンパクト・リーマン多様体から閉部分多様体またはより一般の閉部分集合を除いた部分領域の場合の正値解のなす空間の構造について調べ、その結果を、論文「Uniqueness of solutions of an elliptic singularboundary value problem」、「Nonexistence of subsolutions of a nonlinear elliptic equation onbounded domains in a Riemannian manifold」として発表した。さらに、これらの空間を共形変形することにより得られる完備リーマン多様体をその特別な場合として含む、より一般の非コンパクト・リーマン多様体において、方程式の解の存在、挙動、非存在等について、これまでに与えられて来たいくつかの命題を一般化した形で、統一的な証明を与えた。

Report

(2 results)
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] Shin KATO: "Uniqueness of solutions of an elliptic singular banndary value problem" Osaka J.Math.35・2. 279-302 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Shin KATO: "Nonexistence of subsdutions of a nonlinear elliptic equation on bounded dancing in a Riemcnnian Marifdd" Hiroshima Math.J.28・3. 419-435 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi