• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

複素微分方程式論の解析的方法と代数的方法の関連について

Research Project

Project/Area Number 09740118
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionNippon Institute of Technology

Principal Investigator

石崎 克也  日本工業大学, 工学部, 助教授 (60202991)

Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1998: ¥600,000 (Direct Cost: ¥600,000)
KeywordsNevanlinna theory / Complex differential equation / Functional equation / Wiman-Valiren theory / Meromorphic function / Entire function / Hypertranscendency / Differential field / Value distribution / Neuanlinna Theory / Complex Oseillation / Merom or phic function
Research Abstract

平成9年度に引き続き複素平面上での有理型函数の性質を調べた。特に、ある函数方程式で定義される有理型函数で、かつ有理函数を係数とする代数的微分方程式を満たさない函数(超・超越性)の特徴付けに取り組んだ。また、有理型函数の全体に座標を導入する視点から一意化問題を議論した。超越函数に座標を入れるのに代数的な函数を用いることに微分方程式からの方法を応用することができた。ここでは、次の形の函数方程式について得られた結果を述べることにする。0<|c|<1として
(1) Σ^^n__<j=0>a_j(z)f(c^jz)=Q(z),
ここでa_j,j=0,...,n,a_na_0≠0,Qは有理函数である。方程式(1)の超越的有理型解について
Theorem. f(Z)を(1)の超越的有理型解とすればT(r,f)=0(log^2r)かつlog^2r=O(T(r,f))である。
Theorem.n=1とする、任意の(1)の超越的有理型解f(z)は・超越的(Hy-pertranscendental)である.すなわち、有理関数を係数とするいかなる代数的常微分方程式を満たさない。

Report

(2 results)
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (9 results)

All Other

All Publications (9 results)

  • [Publications] W.Bergwailer,I K.Ishizaki and N.Yanagihaya: "Meromarphic solutions of some functional equations" Method Appl. Anal.5,3. 248-258 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Ishizaki: "Hypertranscendency of meromorphic solutions of a liver functional equation" A equationes Mathematicae. 56・3. 271-283 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Ishizaki and N.Toda: "Vnicity theorems for mermorphic functions sharing four small functions" Kodair Math. J.21・3. 350-371 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Ishizaki and Y.Serizawa: "Study of transcendental number and complex differential equations I" Report of Researches of Nippon Inst.Tech.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Ishizaki and Y.Serizawa: "Study of transcendental number and complex differential equations II" Report of Researches of Nippon Inst.Tech.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] Katsuya ISHIZAKI: "A result for a certain algebraic differential equation" Bull.Hongkong Meth.Soc.1. 301-307 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Katsuya ISHIZAKI: "On the Schwarzian differential equation (w,z)=R(g,w)" Kodai Math,J.20. 67-78 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Katsuya ISHIZAKI: "An osillation vesult for a certain lirear differential aquation of see and ordar" Hokkaido Math.J.26. 421-434 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] Katsuya ISHIZAKI and Kazuya TOHGE: "On the complex oscillation of some linear defferential equations" J.Math.Anal.Appl.206. 503-517 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi