• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

拡張された帯球函数の微分方程式系

Research Project

Project/Area Number 09740122
Research Category

Grant-in-Aid for Encouragement of Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKyushu University (1998)
Rikkyo University (1997)

Principal Investigator

落合 啓之  九州大学, 大学院数理学研究科, 助教授 (90214163)

Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 1998: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1997: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywords可積分系 / 調和振動子 / Heun / 超幾何 / べき単表現 / Selberg積分 / oscillator表現 / 不変式論 / 球関数 / 2面体群 / 例外型ルート系
Research Abstract

1. 量子可積分系の分類問題:これは「いくつかの微分作用素が対称性を持つならば互いに可換であるという条件で知られている可積分系を特徴付けることができるか」という問題である。階数が2の場合は自由度が大きく可積分系にも新しいバリエーションがあることを発見した。第1積分にも対称性の仮定を課せばこれで全て尽きること、すなわちもとの問題が階数、対称性の条件付で解決することも証明している。
2. 非可換性の相互作用と固有値問題:非調和振動子を表す微分作用素D^2+x^2は、固有多項式がHermite多項式で表されるなど超幾何的なふるまいをする微分作用素である。これを行列型に拡張した作用素も漠然と超幾何的な微分作用素であると思われてきた。この行列型の作用素のスペクトル問題はPormeggiani-Wakayamaによって扱われたが、彼等とは別の方法でこの問題を捉え、このスペクトル問題がHeunの微分作用素に対するモノドロミー問題(接続問題)と等価であることを示した。Heunの微分作用素は射影直線上の4点に確定特異点を持つ2階常微分方程式であり、超幾何的なふるまいからは程遠く、今までの印象に対するcounterexampleを与えたことになっている。
3. 半単純リー群の冪単表現の次数:一部は西山享、谷口健二との共同研究である。半単純リー群の(無限次元)ユニタリ表現の分類は最終ステージに近づいており、その鍵となるのが冪単(unipotent)表現と呼ばれるパラメータが非常に退化した表現であり、これに対する研究は内外で活発である。symplectic群のoscillator表現(Weil表現)のテンソル積から生ずる冪単表現の次数(Bernsteindegree)の予想から始まり、その証明、他の群への拡張と現在進行中である。この量にはSelberg型積分,錘のガンマ関数,determinotalvariety,古典的不変式論,重複度自由な作用などさまざまな表現論的な対象が(一部は理由もわからず)関与していて面白い。

Report

(2 results)
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (4 results)

All Other

All Publications (4 results)

  • [Publications] Hiroyuki Ochiai: "A p-adic property of Taylor series of exp(x+x^p/p)" Hokkaido Math.J.(掲載予定). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Hiroyuki Ochiai: "Classification of commuting differential operators with two variables" Proceeding of APCTP-NANKAI symposium on Yang-Baxter systems,non-linear models and their applications. (掲載予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] H.Ochiai: "Quotients of some prehomogeneous vector spaces" Journal of Algebra. 192. 61-73 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] H.Ochiai: "Root lattices and weight lattices of exceptioual simple Liecdgebrus of type E" Comment.Math.Univ.st.Pauli. 46. 23-31 (1997)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi