Co-Investigator(Kenkyū-buntansha) |
DOMEN Kazunari Research Laboratory of Resources Utilization Tokyo Institute of Technology, Professor, 資源化学研究所, 教授 (10155624)
ITOH Mitsuru Materials and Structures Laboratory Tokyo Institute of Technology Professor, 応用セラミックス研究所, 教授 (30151541)
KAKIHANA Masato Materials and Structures Laboratory Tokyo Institute of Technology Associate Professor, 応用セラミックス研究所, 助教授 (50233664)
LEE Jin-kyu School of Chemistry and Molecular Engineering College of Natural Sciences Seoul National University Associate
KIM Hasuch School of Chemistry and Molecular Engineering College of Natural Sciences Seoul National University Associate
CHOY Jin-ho School of Chemistry and Molecular Engineering College of Natural Sciences Seoul National University Associate
LEE JinーKyu ソウル大学, 化学科・触媒センター, 助教授
KIM Hasuck ソウル大学, 化学科・触媒センター, 教授
CHOY JinーHo ソウル大学, 化学科・触媒センター, 教授
|
Budget Amount *help |
¥5,400,000 (Direct Cost: ¥5,400,000)
Fiscal Year 2000: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 1999: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 1998: ¥2,000,000 (Direct Cost: ¥2,000,000)
|
Research Abstract |
In order to develop highly functional ceramics materials for electronics, ionics, optronics, superconductors, sensors, catalysts, etc., we are required to design and optimize (1) chemical compositions, (2) crystal structures, (3) microstructures, (4) electronic stuructures, (5) dispensions, etc., of double oxides like perovskite-type, spinel-type, and α-NaFeO_2 type, etc. Their properties are also depending upon their synthetic/fabrication processings, thus design and control of the processings are also important. In the present study, we have investigated particularly "Solution Processings" because they give lower environmental impacts than other processings based upon solid state reactions, gas/vapor reactions, especially in vacuum (plasma, ion beam, molecular beam, .....), moreover they have a merit to have the possibility to produce metastable and/or low temperature phases which are difficult to form by using high temperature and/or high energetic processings. We have succeeded in following items ; (1) LiCoO_2 films could be fabricated at as low temperature as -100℃ on various metal substrates in a LiOH solution. (2) It was electrochemically active high-temperature LiCoO_2 phase. (3) A flow-type hydrothermal/electrochemical apparatus has been developed for layered films like BaTiO_3/SrTiO_3/Ti. (4) Water soluble complexes of Ti, Nb, and Ta have been synthesized, which enabled to prepare homogeneous double oxide powders containing these metals. (5) Some new layered double oxides have been developed to exhibit high performances as photo-catalysts. (6) Intercalation of ions, salts, molecules, and/or bio-molecules into layered double oxides can produce new functional nano-hybrids. (7) Materials design for new double oxides has been established to create quantum-ferroelectric materials, high Li-ion conductors, superconductors, etc. These results will open a new horizon of materials sciences and technologies.
|