• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Design of Precision-Guaranteed Geometric Algorithms

Research Project

Project/Area Number 10205205
Research Category

Grant-in-Aid for Scientific Research on Priority Areas (B)

Allocation TypeSingle-year Grants
Research InstitutionThe University of Tokyo

Principal Investigator

SUGIHARA Kokichi  University of Tokyo, Graduate School of Engineering, Professor, 工学系研究科, 教授 (40144117)

Co-Investigator(Kenkyū-buntansha) IMAI Toshiyuki  Wakayama Univ., School of System Eng., Associate Professor, システム工学部, 助教授 (90213214)
YAMAMOTO Osami  Aomori Univ., School of Eng., Lecturer, 工学部, 講師 (60200789)
HAYAMI Ken  Univ. of Tokyo, Graduate School of Engineering, Associate Professor, 工学系研究科, 助教授 (20251358)
HIYOSHI Hisamoto  Gunma Univ., School of Eng., Assistant, 工学部, 助手 (40323331)
NISHIDA Tetsushi  University of Tokyo, Graduate School of Engineering, Assistant, 工学系研究科, 助手 (80302751)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥10,700,000 (Direct Cost: ¥10,700,000)
Fiscal Year 2000: ¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 1999: ¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 1998: ¥4,500,000 (Direct Cost: ¥4,500,000)
Keywordsrobust computation / exact computation / precision-guaranteed computation / Voronoi diagram / interval algebra / evaluation of errors / area without zero points / lazy evaluation / 多面体の表現 / 誤差の伝幡 / 有限要素法 / 弾性変形 / ソリッドモデリング / 誤差吸収列 / 凸包 / 剰余演算 / 加速
Research Abstract

Geometric algorithms are important techniques and have many applications in geographic information system, pattern recognition, robot motion planning, computer graphics and finite element analysis. They are studied in computational geometry, but are not necessarily robust against numerical errors. The goal of this project is to overcome this difficulty using precision-guaranteed computation.
We developed a new principle for designing numerically robust geometric algorithm. This principle consists of the evaluation of computational errors, exact-precision computation, acceleration of computation using floating- point filter, symbolic perturbation for avoiding degeneracy, and another acceleration method based on graphics hardware. This principle was applied to the construction of three-dimensional Delaunay diagrams and its application to mesh generation and the construction of a generalized Voronoi diagram for the evaluation of teamwork in sports.
For more difficult geometric problems such as the construction of the crystal Voronoi diagram, we developed another robust method. In this method, the geometric problem is reformulated in terms of a partial differential equation, and is solved using finite-difference method, the fast-marching method, in particular. We applied this method to the robot motion planning, in which the collision-free shortest path among enemy robots is computed, and could prove that our new method is more efficient than previous methods.

Report

(4 results)
  • 2001 Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (41 results)

All Other

All Publications (41 results)

  • [Publications] K.Sugihara, M.Iri, H.Inagaki, T.Imai: "Topology-oriented implementation---An approach to robust geometric algorithms"Algorithmica. 27. 5-20 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Sugihara: "How to make geometric algorithms robust"IEICE Transactions on Information and Systems. E83-D. 447-454 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Sugihara: "Three-dimensional convex hull as a fruitful source of diagrams"Theoretical Computer Science. 235. 325-337 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Hiroshima, Y.Miyamoto, K.Sugihara: "Another proof of polynomial-time recognizability of Delaunay graphs"IEICE Transactions on Fundamentals. E83-A. 627-638 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Hiyoshi, K.Sugihara: "Voronoi-based interpolation with higher continuity"Proceedings of the 16th Annual Symposium on Computational Geometry. 242-250 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Hiyoshi, K.Sugihara: "A sequence of generalized coordinate systems based on Voronoi diagran and its application to interpolation"Proceedings of Geometric Modeling and Processing 2000. 129-137 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Hiyoshi, K.Sugihara: "An inerpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry,Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Hiyoshi, K.Sugihara: "Two generalizations of an interpolant based on Voronoi diagrams"International Journal of Shape Modeling. 5. 219-231 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Sugihara: "Surface interpotation based on new local coordinates"Computer Aided Geometric Design. 31. 51-58 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Sugihara: "Resolvable representation of polyhedra"Discrete and Computational Geometry. 21. 243-255 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Minakawa, Sugihara: "Topology-oriented construction of three-dimensional convex hulls"Optimization Methods & Software. 10. 357-371 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] A.Okabe, B.Boots, K.Sugihara, S.-N.Chiu: "Spatial Tessellations---Concepts and Applications of Voronoi Diagrams,Second Edition"Voronoi diagram of a circle set from Voronoi diagram of a point set,I Topology. 671 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 杉原厚吉, 今井敏行: "工学のための応用代数"共立出版. 174 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Sugihara, M. Iri, H. Inagaki and T. Imai: "Topology-oriented implementation---An approach to robust geometric algorithms"Algorithmica. 27. 5-20 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Sugihara: "How to make geometric algorithms robust"IEICE Transactions on Information and Systems. E83-D. 447-454 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Sugihara: "Three-dimensional convex hull as a fruitful source of diagrams"Theoretical Computer Science. 235. 325-337 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Hiroshima, Y. Miyamoto and K. Sugihara: "Another proof of polynomial-time recognizability of Delaunay graphs"IEICE Transactions on Fundamentals. E83-A. 627-638 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Hiyoshi and K. Sugihara: "Voronoi-based interpolation with higher continuity"Proceedings of the 16th Annual Symposium on Computational Geometry. 242-250 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Hiyoshi and K. Sugihara: "A sequence of generalized coordinate systems based on Voronoi diagrams and its application to interpolation"Proceedings of Geometric Modeling and Processing. 2000. 129-137 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Hiyoshi and K. Sugihara: "An inerpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry, Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Hiyoshi and K. Sugihara: "Two generalizations of an interpolant based on Voronoi diagrams"International Journal of Shape Modeling. 5. 219-231 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Sugihara: "Surface interpotation based on new local coordinates"Computer Aided Geometric Design. 31. 51-58 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K. Sugihara: "Resolvable representation of polyhedra"Discrete and Computational Geometry. 21. 243-255 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T. Minakawa and K. Sugihara: "Topology-oriented construction of three-dimensional convex hulls"Optimization Methods & Software. 10. 357-371 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Sugihara,M.Iri,H.Inagaki and T.Imai: "Topology-oriented implementation…An approach to robust geometric algorithms"Algorithmica. 27. 5-20 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Hiyoshi and K.Sugihara: "An inerpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry,Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kokichi Sugihara: "Three-dimensional convex hull as a fruitful source of diagrams"Theoretical Computer Science. 235. 325-337 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Hiyoshi and K.Sugihara: "Voronoi-based interpolation with higher continuity"Proceedings of the 16th Annual Symposium on Computational Geometry. 242-250 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] D.-S.Kim,D.Kim and K.Sugihara: "Voronoi diagram of a circle set constructed from Voronoi diagram of apoint set"11th International Conference ISAAC 2000. 432-443 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 山本修身: "多項式の微分係数情報を付加した零点不在領域とNewton法"日本応用数理学会論文誌. 10・4. 65-90 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] A.Okabe,B.Boots,K.Sugihara and S.-N.Chiu: "Spatial Tessellations…Concepts and Applications of Voronoi Diagrams, Second Edition"John Wiley and Sons. 671+xvi (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kokichi Sugihara: "Resolvable Representation of Polyhedra"Discrete and Computational Geometry. 21. 243-255 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K. Sugihara, M. Iri, H. Inagaki and T. Imai: "Topology-oriented implementation --- An approach to robust geometric algorithms"Algorithmica. 27. 5-20 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hisamoto Hiyoshi, Kokichi Sugihara: "An interpolant based on line segment Voronoi diagrams"Discrete and Computational Geometry, Lecture Notes in Computer Science. 1763. 119-128 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kokichi Sugihara: ""Impossible objects" are not necessarily impossible --- Mathematical study on optical illusion"Discrete and Computational Geometry, Lecture Notes in Computer Science. 1763. 305-316 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kokichi Sugihara: "Topology-Oriented Approach to Robust Geometric Algorithms"ISAAC 1999. (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 中島将行、寺尾次郎、渡辺省吾、安藤繁、速水謙: "弾性体の内点で観測された変位に基づく表面力の同定"境界要素法研究会 境界要素法論文集. 16. 103-108 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Ken Hayami, S.A.Sauter: "Cost Estimation of the Panel Clustering Method Applied to 3-D Elastostatics" Proceedings of the Second European Boundary Element Method Symposium. 33-42 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 畑口剛之, 杉原厚吉: "線分の交点列挙問題に対する平面走査法の改良" 日本応用数理学会論文誌. 8・2. 257-274 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Tsuyoshi Minakawa, Kokichi Sugihara: "Topology-Oriented Construction of Three-Dimensional Convex Hulls" Optimization Metheds and Software. 10. 357-371 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Kokichi Sugihara: "Degeneracy and Instability in Geometric Computation" Sixth IFIP WG 5.2 International Workshop on Geometric Modeling. 5-15 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi