• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theoretical Studies of Fluctuations and Reaction Dynamics in Many-Body Chemical Systems

Research Project

Project/Area Number 10206201
Research Category

Grant-in-Aid for Scientific Research on Priority Areas (B)

Allocation TypeSingle-year Grants
Research InstitutionNagoya University

Principal Investigator

OHMINE Iwao  Nagoya University, Chemistry Department, Professor, 大学院・理学研究科, 教授 (60146719)

Co-Investigator(Kenkyū-buntansha) 住 斉  筑波大学, 物質工学系, 教授 (10134206)
松本 正和  名古屋大学, 物質理科学国際研究センター, 助手 (10283459)
斎藤 真司 (斉藤 真司)  名古屋大学, 大学院・理学研究科, 助教授 (70262847)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥52,500,000 (Direct Cost: ¥52,500,000)
Fiscal Year 2000: ¥5,600,000 (Direct Cost: ¥5,600,000)
Fiscal Year 1999: ¥38,900,000 (Direct Cost: ¥38,900,000)
Fiscal Year 1998: ¥8,000,000 (Direct Cost: ¥8,000,000)
KeywordsProton Transfer / Freezing Process / Nonlinear Spectroscopy / Two-dimensional Raman Spectroscopy / Molecular Mechanism / Simulation / Liquid / Intermolecular Dynamics / 凝縮系 / 化学反応動力学 / 蛋白質 / 氷化 / 水 / 選択性・機能性 / 生体高分子反応 / 水のダイナミックス / 揺らぎと緩和 / 高次非線形分光 / 水の氷化 / アモルファス / バクテリオ・ロドプシン / イオンチャネル / 水素結合 / 集団運動 / 揺らぎ / 非線形分光 / ポテンシャルエネルギー面 / ダイナミックス
Research Abstract

Water dynamics and chemical reactions are analyzed.
We have been studying the following three subjects of liquid water dynamics ;
(1) What is the nature of the global potential energy surface involved in the liquid water dynamics, which characterized by collective motions and long-time relaxation/fluctuations? How can we detect directly these collective motions and relaxations experimentally?
(2) How does an excess proton move in water (liquid water and ice)?
(3) How does water freeze into a crystalline ice structure?
We will present the results for (1)--(3), especially (3).
Liquid Water Dynamics
Various relaxations associated with these collective motions in liquid water yield so-called 1/f spectra, which appears in potential energy fluctuation the low frequency profile of Raman signal (associated with the polarization fluctuation), and others. The spatial-temporal nature of the intermittent local collective motions can be detected by using the neutron scattering and X-ray scattering, when t … More hey can measure for the smaller angle and lager wave vector values (i. e. the lower energy and smaller spatial region) than the present ones. One of the methods, which may detect these intermittent collective motions, is a higher nonlinear flash photolysis experiment, since this method deals with the phasspace dynamics of a system. This technique is analogous to the spin-echo experiment but uses photons, and distinguishes the homogeneous and the inhomogeneous elements in liquid dynamics. The problem of applying these higher order nonlinear experiments to water at present is that the signal intensity from water must be very weak, as its polarizability is one order of magnitude smaller than CS2. As the development of this field is very fast, it may become soon possible that we detect these collective motions and their relaxation in water directly.
Proton Transfer in Ice
The proton transfer in ice is known to be very fast ; its rate is considered to be about half of that in liquid water. But its mechanism must be quite different from the liquid water case. The geometry and the motions of water molecules in ice are confined due to the strong structural constraint from the surrounding water molecules and thus no significant hydrogen bond network rearrangement takes place, but the proton transfer is still very fast in ice. We have investigated the mechanism of the excess-proton transfer in ice by analyzing the potential energy surface, the norrnal modes and the interaction with a defect. It is found that the solvation from water molecules in long-distance shells is essential for the smooth transport of the proton.
Water Freezing
Upon cooling, water freezes to ice. This familiar phase transition occurs widely in nature, yet unlike the freezing of simple liquids^<4-6>, it has never been successfully simulated on a computer. The difficulty lies with the fact that hydrogen bonding between individual water molecules yields a disordered three-dimensional hydrogen-bond network whose rugged and complex global potential energy surface^<1-3> permits a large number of possible network configurations. As a result, it is very challenging to reproduce the freezing of 'real' water into a solid with a unique crystalline structure. For systems with a limited number of possible disordered hydrogen-bond network structures, such as confined water, it is relatively easy to locate a pathway from a liquid state to a crystalline structure^<7-9>. For pure and spatially unconfined water, however, molecular dynamics simulations of freezing of are severely hampered by the large number of possible network configurations that exit. Here we present a molecular dynamics trajectory that captures the molecular processes involved in the freezing of pure water. We find that ice nucleation occurs once a sufficient number of relatively long-lived hydrogen bonds develop spontaneously at the same location to form a fairly compact initial nucleus. The initial nucleus then slowly changes shape and size until it reaches a stage that allows rapid expansion, resulting in crystallization of the entire system. Less

Report

(4 results)
  • 2001 Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] M.Matsumoto, S.Saito, I.Ohmine: "Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing"Nature. 416. 409-413 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S.Saito, I.Ohmine: "Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquids Cs2 and water"Phys.Rev.Lett.. (in press). (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Chigasa Kobayashi, Shinji Saito, Iwao Ohmine: "Mechanism of Proton Transfer in Ice II;Hydration,Modes and Transport"J.Chem.Phys. 115. 4742-4749 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Chigasa Kobayashi, Shinji Saito, Iwao Ohmine: "Mechanism of Fast Proton Transfer in Ice;Potential Energy Surface and Reaction Coordinate Analyses"J.Chem.Phys.. 113. 9090-9100 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S.Hayashi, I.Ohmine: "Proton Transfer in Bacteriorhodopsin;Structure,Excitation and IR Spectra,and Potential Energy Surface Analyses by an ab initio QM/MM method"J.Phys.Chem.. B104. 10678-10691 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] I.Ohmine, S.Saito: "Water Dynamics;Fluctuation,Relaxation and Chemical Reaction in Hydrogen Bond Network Rearrangement"Accounts of Chemical Research. 32. 741-749 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M. Matsumoto, S. Saito and I. Ohmine.: ""Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing""Nature. 416. 409-413 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S. Saito and I. Ohmine.: ""Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquids Cs2 and water""Phys. Rev. Lett.. (in press). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Chigasa Kobayashi, Shinji Saito and Iwao Ohmine.: ""Mechanism of Proton Transfer in lce II ; Hydration, Modes and Transport","J. Chem. Phys.. 115. 4742-4749 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Chigasa Kobayashi, Shinji Saito and Iwao Ohmine.: ""Mechanism of Fast Proton Transfer in lce ; Potentral Energy Surface and Reaction Coordinate Analyses""J. Chem. Phys.. 113. 9090-9100 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S. Hayashi and I. Ohmine.: ""Proton Transfer in Bacteriorhodopsin ; Structure, Excitation and IR Spectra, and Potential Energy Surface Analyses by an ab initio QM/MM method""J. Phys. Chem.. B 104. 10678-10691 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] I. Ohmine and S. Saito: ""Water Dynamics ; Fluctuation, Relaxation and Chemical Reaction in Hydrogen Bond Network Rearrangement""Accounts of Chemical Research. 32. 741-749 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Chigasa Kobayashi,Shinji Saito and Iwao Ohmine: "Mechanism of Fast Proton Transfer in Ice ; Potential Energy Surface and Reaction Coordinate Analyses"Journal of Chemical Physics. 113. 9090-9010 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] S.Hayashi and I.Ohmine: "Proton Transfer in Bacteriorhodopsin ; Structure, Excitation and IR Spectra, and Potential Energy Surface Analyses by an ab initio QM/MM method"Journal of Physical Chemistry. B104. 10678-10691 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] S. Saito, M. Matsumoto, I. Ohmine: "Water Dynamics ; Fluctuation, Relaxation and Chemical Reaction"Advances in Classical Trajectory Methods. 4. 105-151 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] I. Ohmine and S. Saito: "Water Dynamics ; Fluctuation, Relaxation and Chemical Reaction in Hydrogen Bond Network Rearrangement"32. 741-749 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 斉藤真司、松本正和、大峰巌: "水のダイナミックスとクラスター"The Bulletin of the Cluster Science and Technology. 2-2. 25-32 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 斉藤真司: "Off-Resonant Fifth Order Nonlinear Response of Water and CS_2" Journal of Chemical Physics. 108. 240-251 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 馬場昭典: "Global potential energy surfaces of water clusters;Reaction coordinate and annealing analyses" Journal of molecular Simvclation. 77. 95-103 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 松本正和: "Hydrogen Bond Rearrangement,Phase Space Dynamics and Proton Transfer" The Physics of Complex Lignid World Scientul. 324-338 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 大峰 巌: "Fluctuation,Relaxation and Chemical Reaction in Hydrogen Bond Network Rearrangement" Accouorts of Chemical Reseach. (印刷中). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 斉藤真司: "Water Dynamics;Fluctuation,Relaxation and Chemical Reactions" Advances in Classical Trajectory. 4(印刷中). (1999)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi