• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fundamental Research of Discrete Geometric Analysis and Its Applications

Research Project

Project/Area Number 10304011
Research Category

Grant-in-Aid for Scientific Research (A).

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionTohoku University

Principal Investigator

SUNADA Toshikazu  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (20022741)

Co-Investigator(Kenkyū-buntansha) HASEGAWA Koji  Tohoku University, Graduate School of Science, Assistant Prof., 大学院・理学研究科, 講師 (30208483)
SAITO Kazuyuki  Tohoku University, Graduate School of Science, Associate Prof., 大学院・理学研究科, 助教授 (60004397)
KOTANI Motoko  Tohoku University, Graduate School of Science, Associate Prof., 大学院・理学研究科, 助教授 (50230024)
URAKAWA Hajime  Tohoku University, Graduate School of Information Science, Prof., 大学院・情報科学研究科, 教授 (50022679)
KUROKI Gen  Tohoku University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (10234593)
藤原 耕二  東北大学, 大学院・理学研究科, 助教授 (60229078)
中野 史彦  東北大学, 大学院・理学研究科, 助手 (10291246)
新井 仁之  東北大学, 大学院・理学研究科, 教授 (10175953)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥16,200,000 (Direct Cost: ¥16,200,000)
Fiscal Year 2000: ¥5,100,000 (Direct Cost: ¥5,100,000)
Fiscal Year 1999: ¥4,900,000 (Direct Cost: ¥4,900,000)
Fiscal Year 1998: ¥6,200,000 (Direct Cost: ¥6,200,000)
KeywordsDiscrete Laplacian / Crystal Lattice / Harper Operator / Central Limit Theorem / アルバネーゼ写像 / 標準的実現 / グラフの調和写像 / 格子振動 / 離散幾何学 / グラフ / スペクトル幾何 / 固有値
Research Abstract

We have handled both geometric and analytic aspects of discrete Laplacians on infinite graphs which are main objects in discrete geometric analysis and show up in various fields of pure and applied mathematics, say the theory of discrete groups communication networks and Markov chains. Especially we obtained interesting results on large time asymptotic behaviors of transition probabilities of random walks on crystal lattices. One is the local central limit theorem, and another is asymptotic expansions. In our study, we made use of the notions of Albanese tori and Albanese maps which have the origin in algebraic geometry. In connection with this, we developed the theory of harmonic maps from graphs into Riemannian manifolds. Albanese maps is defined as a harminic maps from a finite graph into a flat torus. In this project, we have also studied the spectral properties of discrete magnetic Schroedinger. operators (Harper operators) on crystal lattices. The central limit theorem for Harper operators was established. We investigated twisted group C^* algeblas associated with Harper operators which is a generalization of non-commutative tori. As a byproduct of our research, we gave a rigorous treatment of quantized theory of lattice vibrations.

Report

(4 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (29 results)

All Other

All Publications (29 results)

  • [Publications] 砂田利一: "Jacobian tori associated with a finite graphs and its abelian covering graphs"Advances in Appl Math. 24. 89-110 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 小谷元子: "Albanese maps and off-diagonal long time asymptotics for the heat kernal"Comm.Math.Phys.. 209. 633-670 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 小谷元子: "Zeta functions of finite graphs"J.Math.Sci.Vnis.Tokyo. 7. 7-25 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 小谷元子: "Standard realizations of crystal lattices via harmonic maps"Trans A.M.S.. 353. 1-20 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 小谷元子: "On asymptotics for closed geoderics in a negatively curved manifold"Math.Ann..

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 砂田利一: "Pressure and higher correlation functions for an Anoson diffeomorphism"Th.Ergod.& Dyn.Syst..

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Toshikazu Sunada: "Jacobian tori associated with finite graphs and its abelian covering graphs"Advances in Appl.Math.. 24. 89-110 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Toshikazu Sunada: "Standard realizations of crystal Lattices via harmonic maps"Trans.A.M.S.. 353. 1-20 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Motoko Katani: "Albanese maps and off-diagonal long time asymptotics for the heat kernel"Comm.Math.Phys.. 209. 633-670 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Motoko Kotani: "Zeta functions of finite graphs"J.Math.Sci.Univ.Tokyo. 7. 7-25 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Motoko Kotani: "On asymptotics for closed geodesics In a negatively curve manifold"Math.Ann.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Motoko Kotani: "Pressure and higher correlation Functions for an Anosov Diffeomorphisms"Th.Ergod.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 砂田利一: "Jacobian tori associated with a finite graph and its abeiran covering graphs"Adoances in Appli Math.. 24. 89-110 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小谷元子: "Albanese rumps and on off diagonal long tone asymptotics for the hear kernel"Comm.Math.Phys.. 209. 633-670 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小谷元子: "Zeta functions of finite graphs"J.Math.Sci.Univ.Tokyo. 7. 7-25 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 小谷元子: "Standard realizations of crystal lattices via harmonic maps"Trans.Amer.Math.Soc..

    • Related Report
      2000 Annual Research Report
  • [Publications] 小谷元子: "On asymptotics for closel geodesics in a negatively curved manifolds"Math.Aun..

    • Related Report
      2000 Annual Research Report
  • [Publications] 砂田利一: "Pressure and higher correlation functions for an Anosov diffeomorphism"

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Kotani: "Jacobian tori associated with a finite graphs and graph its abelian covering"Advances in Apply. Math.. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Kotani: "Standard realization-of crystal lattices via harmonic maps"Trans. A.M.S.. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Kotani: "Albanese maps and off diagonal long time asymptotics for the heat kernal"Comm. Math. Phys. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Kotani: "Zeta functions of finite graphs"J. Math. Sci.Tokyo Univ.. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Kotani: "The pressure and higher correlations for an***diffeo"Ergod.Th & Pynam.Sys.. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] Motoko Kotani,Tomoyuki Sirai Toshikazu Sunada: "Arymiototic behavior of the transtion probability of a random walk on an infinite graph" Journal of Functional Analysis. 159. 664-689 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Motoko Kotani,Toshikazu Sunada: "The Jacobian torns associated with finite graphs" Advances in Applied Mathematics.

    • Related Report
      1998 Annual Research Report
  • [Publications] Toshikazu Sunada: "Co growth functions and spectva of finitely generated groups" Journal of Math.Sco.of Japan.

    • Related Report
      1998 Annual Research Report
  • [Publications] Koji Fujiwara,Nevo: "Maximal and pointwise ergodic theorems for word-hyperbolic groups" Ergodic Theory and Dynamical Systems. 18. 843-874 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Koji Fujiwaya: "The second bounded cohomology of amalgamated free product of groups" Transactives Amer.Math.Soc.

    • Related Report
      1998 Annual Research Report
  • [Publications] F.Nakano: "Calculation of the Hall conductivity by Abel hmit" Ann.Inst.H.Poincave. 69. 441-455 (1988)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi