Project/Area Number |
10440025
|
Research Category |
Grant-in-Aid for Scientific Research (B).
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Chiba University |
Principal Investigator |
KAWARADA Hideo Chiba University, Eng. Prof., 工学部, 教授 (90010793)
|
Co-Investigator(Kenkyū-buntansha) |
KAKO Takashi University of Electro-Communications, Comput. Science and Information Mathematics, Prof., 電気通信学部, 教授 (30012488)
MORI Masatake Kyoto University, Research Institute for Mathematical Sciences, Prof., 数理解析研究所, 教授 (20010936)
FUJITA Hiroshi Tokai University, Research Institute of Educational Development, Prof., 教育開発研究所, 教授 (80011427)
TSUTSUMI Masayoshi Waseda University, Applied Physics, Prof., 理工学部, 教授 (70063774)
NAKAO Mitsuhiro Kyushu University, Graduate School of Mathematics, Prof., 大学院・数理学研究科, 教授 (10136418)
田端 正久 九州大学, 大学院・数理学研究科, 教授 (30093272)
今井 仁司 徳島大学, 工学部, 教授 (80203298)
松葉 育雄 千葉大学, 工学部, 教授 (30251177)
中村 正彰 日本大学, 理工学部, 助教授 (00017419)
池田 勉 龍谷大学, 理工学部, 教授 (50151296)
|
Project Period (FY) |
1998 – 2000
|
Project Status |
Completed (Fiscal Year 2000)
|
Budget Amount *help |
¥6,400,000 (Direct Cost: ¥6,400,000)
Fiscal Year 2000: ¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 1999: ¥3,400,000 (Direct Cost: ¥3,400,000)
|
Keywords | Complex systems / Numerical analysis / Ecosystem / Multi-phase flow / Free surface problem / Mathem atical modeling / Domain decomposition method / Optimization algorithm / 油濁 / 沿岸生態系 / 大規模連立一次方程式 / 反復解法 / 有限要素法 / Navier-Stokes方程式 / ニューラルネットワーク / 最適化 / 複雑形状 / 数学的モデル / 非線形偏微分方程式 |
Research Abstract |
This project has continued for three years from 1998 to 2000. Fruiful and hopeful research results have been obtained by collaborations of excellent cooperators. We are sure that these results promise great success in the field of environments, industrial and applied mathematics. Main topics of research results are the followings. Developments of modeling for environment problems. Developments of numerical algorithm and programing for various complex phenomena. Developments of hybrid algorithm for global optimization problems. Developments of analysis and numerical simulation in the fluid dynamics.
|