• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on semi-selfdecomposable distributions and semi-selfsimilar stochastic processes

Research Project

Project/Area Number 10440033
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKeio University

Principal Investigator

MAEJIMA Makoto  Keio University Mathematics Professor, 理工学部, 教授 (90051846)

Co-Investigator(Kenkyū-buntansha) KAWAZOE Takeshi  Keio University Fac.of Policy Management Professor, 総合政策学部, 教授 (90152959)
TAMURA Yozo  Keio University Mathematics Associate Professor, 理工学部, 助教授 (50171905)
NAKADA Hitoshi  Keio University Mathematics Professor, 理工学部, 教授 (40118980)
WATANABE Toshiro  The Univ. of Aizu Center for Mathematical Sciences Assistant Professor, 総合数理科学センター, 専任講師 (50254115)
SATO Ken-iti  Nagoya Univ. Professor emeritus, 名誉教授 (60015500)
野寺 隆  慶應義塾大学, 理工学部, 助教授 (50156212)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥5,600,000 (Direct Cost: ¥5,600,000)
Fiscal Year 2000: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 1999: ¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 1998: ¥1,900,000 (Direct Cost: ¥1,900,000)
Keywordsinfinitely divisible distributions / selfdecomposable distributions / semi-selfdecomposable distributions / type G distributions / selfsimilar stochastic processes / semi-selfsimilar stochastic processes / levy processes / absolute continuity / 従属操作 / 過渡性 / 半安定分布 / 極限定理
Research Abstract

1. The structure of the classes of semi-selfdecomposable distributions and its nested subclasses were clarified among the class of all infinitely divisible distributions. We introduced a way of making a new class of limitinz distributions derived from a class of distributions by taking the limit through some subsequence of normalized partial sums of independent random variables. We characterized completely a sort of a fixed point of this procedure.
2. In contrast to the absolute continuity of all selfdecomposable distributions, we found that semi-selfdecomposable distributions are not necessarily absolutely continuous. We also found a subclass of semi-selfdecomposable distributions which are always absolutely continuous.
3. We constructed some examples of non-selfdecomposable (or non-semi-selfdecomposable) distributions whose projections to lower dimensional spaces are selfdecomposable (or semi-selfdecomposable). This property has a sharp contrast to stable distributions.
4. We found that the marginal distributions of semi-selfsimilar processes at a time is selfdecomposable. We also found that their joint distributions at several times are closely related to nested subclasses of selfdecomposable distributions. It is also proved that similar observations remain true between selfdecomposable distributions and selfsimilar processes.
5. We succeeded in defining multivariate type G distributions and found a necessary and sufficient condition for that they are selfdecomposable. We also defined a sequence of nested subclasses of type G distributions and succeeded in making a new refinement of the class of infinitely divisible distributions.

Report

(4 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (36 results)

All Other

All Publications (36 results)

  • [Publications] M.Maejima,Y.Naito: "Semi-selfdecomposable distributions and a new class of limit theorems"Probab.Th.Rel.Fields. 112. 13-31 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima,K.Sato: "Semi-selfsimilar processes"J.Theoret.Probab.. 12. 347-373 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments"Statist.Probab.Lett.. 47. 395-401 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima,K.Suzuki,Y.Tamura: "Some multivariate infinitely divisible distributions and their projections"Probab.Math.Statist.. 19. 421-428 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Completely operator semi-selfdecomposable distributions"Tokyo J.Math.. 23. 235-253 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] P.Embrechts,M.Maejima: "An introduction to the theory of self-similar stochastic processes"Intern.J.Modern Physics B. 14. 1399-1420 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Sato: "Levy Processes and Infinitely Divisible Distributions"Cambridge University Press. 486 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 河添健: "群上の調和解析"朝倉書店. 186 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima and Y.Naito: "Semi-selfdecomposable distributions and a new class of limit theorems"Probab.Th.Rel.Fields. Vol.112. 13-31 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima and K.Sato: "Semi-selfsimilar processes"J.Theoret.Probab.. Vol.12. 347-373 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima, K.Sato and T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments"Statrst.Probab.lett. Vol.47. 395-401 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima, K.Suzaki and Y.Tamura: "Some multivariate infinitely divisible distributions and their projections"Probab.Math.Stutrst.. Vol.19. 421-428 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima, K.Sato and T.Watanabe: "Completely operator semi-selfdecomposable distributions"Tokyo J.Math.. Vol.23. 235-253 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] P.Embrechts and M.Maejima: "An introduction to the theory of self-similar stochastic processes"Intern.J.Modern Physics B. Vol.14. 1399-1420 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] K.Sato: "Levy Processes and Infinitely Divisible Distributions"Cambridge University Press. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Completely operator semi-selfdecomposable distributions"Tokyo J.Math.. 23. 235-253 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Watanabe: "Continuity properties of distributions with some decomposability"J.Theort.Probab.. 13. 169-191 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Watanabe: "Absolute continuity of some semi-selfdecomposable distributions and self-similar measures"Probab.Theory Related.Fields. 117. 387-405 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] P.Embrechts,M.Maejima: "An introduction to the theory of self-similar stochastic processes"Inter.J.Modern Physics B. 14. 1399-1420 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Anronson,H.Nakada: "Multiple recurrence of Markov shifts and other infinite measure preserving transformations"Israel J.Math.. 117. 285-310 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Kawaza,Y.Suzuki,H.Tanaka: "A diffusion process with a one-sided Brownian potential"Tokyo J.Math. (掲載決定). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 河添健: "群上の調和解析"朝倉書店. 186 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Exponents of semi-selfsimilar processes"Yokohama Math.J.. 47. 93-102 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments"Statistics and Probability Letters. (掲載予定). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Maejima,K.Sato,T.Watanabe: "Completely operator semi-selfdecomposable distributions"Tokyo J.Math.. (掲載予定). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Maejima,K.Suzuki,Y.Tamura: "Some multibariate infinifely divisible distributions and their projections"Probab.Math.Statist.. (掲載予定). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Watanabe: "Absolute continuity of some semi-selfdecomposable distributions and selfsimilar measures"Probab.Theory Rel. Fields. (掲載予定). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kawazoe: "Hardy spaces and maximal operators on real rank one,semisimple Lie qroup I"Tohoku Math.J.. (掲載予定). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Sato: "Levy Processes and Infinitely Divisible Distributions"Cambridge University Press. 486 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 河添 健: "群上の調和解析"朝倉書店(出版決定). 200 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] M. Maejima, Y. Naito: "Semi-selfdecomposable distributions and a new class of limit theorems" Probab.Th.Rel.Fields. 112巻. 13-31 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K. Sato: "Multivariate distributions with selfdecomposable projections" J.Korean Math.Soc.35巻. 783-791 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M. Maejima, G. Samorodnitsky: "Certain probabilistic aspects on semistable laws" Am.Inst.Statist.Math.(掲載決定).

    • Related Report
      1998 Annual Research Report
  • [Publications] M. Maejima, K. Sato: "Semi-selfsimilar processes" J.Theoret.Probab.(掲載決定).

    • Related Report
      1998 Annual Research Report
  • [Publications] M. Maejima, K. Sato, T. Watanabe: "Operator semi-selfdecomposability, (C,Q)-decomposability and related nested classes" Tokyo J.Math.(掲載決定).

    • Related Report
      1998 Annual Research Report
  • [Publications] T. Watanabe: "Continuity properties of distributions with some decomposability" J.Theoret.Probab.(掲載決定).

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi