• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Complex analysis of Bergman spaces and α-cohomology

Research Project

Project/Area Number 10440041
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionNagoya University

Principal Investigator

OHSAWA Takeo  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (30115802)

Co-Investigator(Kenkyū-buntansha) KITAOKA Yoshiyuki  Nagoya Univ., Professor, 大学院・多元数理科学研究科, 教授 (40022686)
SUZUKI Noriaki  Nagoya Univ., Associate Professor, 大学院・多元数理科学研究科, 助教授 (50154563)
NAKANISHI Toshihiro  Nagoya Univ., Associate Professor, 大学院・多元数理科学研究科, 助教授 (00172354)
YAMATO kazuo  Nagoya Univ., Associate Professor, 大学院・多元数理科学研究科, 助教授 (30022677)
三宅 正武  名古屋大学, 大学院・多元数理科学研究科, 教授 (70019496)
青本 和彦  名古屋大学, 大学院・多元数理科学研究科, 教授 (00011495)
吉川 謙一  名古屋大学, 大学院・多元数理科学研究科, 助手 (20242810)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥5,200,000 (Direct Cost: ¥5,200,000)
Fiscal Year 1999: ¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 1998: ¥2,500,000 (Direct Cost: ¥2,500,000)
KeywordsBergman Kernel / LィイD12ィエD1 holomorphic function / Pseudoconvex domain / Bergman metric / Complexification of gid / Extension theorem / Division theorem / Bergman計算 / ^∂_-方程式 / 皆既関数 / 超擬凸 / Bergman空間 / L^2拡張定理
Research Abstract

Bergman metric of bounded balanced pseudoconvex domains in CィイD1nィエD1 was studied. A quantitative result implying the completeness first due to Jarnicki-Pflug was obtained. Singular fiber metric was used to obtain as estimate for the Bergman kernel function on pseudoconvex domains in PィイD1nィエD1. A new phenomenon encountere was that locally hyperconvex domains in PィイD1nィエD1 are not necessarily globally hyperconvex. As for the domains with smooth boundary existence of bounded p.s.h. functions was proved. In case the boundary is real analytic, it was proved that such a pseudoconvex domain must be strictly pseudoconvex at some boundary point. More recently, a generalization of an LィイD12ィエD1 extension theorem to complex manifolds was obtained, which has, as a corollary, a famous LィイD12ィエD1 division theorem of Skoda.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (27 results)

All Other

All Publications (27 results)

  • [Publications] T. Ohsawa and N. Sibony: "Bounded P.S.H. functions and psendeconvexity"Nagoya Math. J.. 149. 107-112 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Diederich and T. Ohsawa: "On psendoconvex domains in TP^n"Tokyo J. Math.. 21. 353-358 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa: "Psendoconvex domains inTP^n : Aquestion"Proc. of the 40th Taniguchi Symp.. 239-252 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa: "An essay on the Bergman metric"Proc. of ISAAC Conference. 141-148 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa and N. Sibony: "Kahler identity on Leviflat manifolds"Nagoya Math. J..

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa: "Nonexistence of real analytic Leviflat"Nagoya Math. J..

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 大沢健夫: "多変数複素解析"岩波書店. 119 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 大沢健夫: "多変数複素解析入門-補間理論を中心に"東京大学大学院数理科学研究科セミナー刊行会. 138 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa and N. Sibony: "Bounded P.S.H. functions and pseudoconvexity"Nagoya Math. J.. 149. 107-112 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Diederich and T. Ohsawa: "On pseudoconvex domains in PィイD1nィエD1"Tokyo J. Math. 21. 353-358 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa: "Pseudoconvex domains in PィイD1nィエD1 : A question on 1-convex boundary points"Proc. of the 40th Taniguchi Symp.. 239-252 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa: "An essey on the Bergman Metric"Proc. of ISSAC conf.. 141-148 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa and N. Sibony: "Kahler identity on Levi flat manifolds"Nagoya Math. J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohsawa: "Nonexistence of real analytic Levi flat hypersurfaces in PィイD12ィエD1"Nagoya Math. J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Takeo Ohsawa: "Analysis in Several Complex Variables (in Japanese)"Iwanami. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Takeo Ohsawa: "Introduction to Analysis in Several Complex Variables (in Japanese)"Tokyo University of Mathematical Lectures. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Ohsawa and N.Sibony: "Bounded P.S.H. functions and pseudoconvexity in Kahler manifold"Nagoya Math.J.. 149. 107-112 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Diederich and T.Ohsawa: "On pseudoconvex domains in P^n"Tokyo J.Math.. 21. 353-358 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Ohsawa: "Pseudoconvex domains in P^n: A question on the 1-convex boundary points"Proc.of the 40th Taniguchi Symp.. 239-252 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Ohsawa: "An essay on the Bergman metric and balanced domains"Proc.of ISSAAC conference. 141-148 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Ohsawa and N.Sibony: "Kahler identity on Levi flat manifolds"Nagoya Math.J..

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Ohsawa: "Nonexistence of real analytic Levi flat"Nagoya Math.J..

    • Related Report
      1999 Annual Research Report
  • [Publications] 大沢 健夫: "多変数複素解析"岩波書店. 119 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] 大沢 健夫: "多変数複素解析入門-補間理論を中心に"東京大学大学院数里科科学研究科セミナー刊行会. (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Ohsawa,T.and Sibcny,N.: "Bounded P.S.H.functions and pseudoconvexity in Kahler inaritold" Nagoya Mathematical Journal. 149. 1-8 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Diederich,K.and Ohsawa,T.: "On pseudoconvex domains in P^n" Tokyo Journal of Math.21. 353-358 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 大沢健夫: "多変数複素解析" 岩波書店, 119 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi