• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

STUDY OF NOETHERIAN LOCAL RINGS IN COMMUTAIVE ALGEBRA

Research Project

Project/Area Number 10640002
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHokkaido University of Education

Principal Investigator

NISHIMURA Jun-ichi  Hokkaido University of Education, Sapporo Campus, Associate Professor, 教育学部・札幌校, 助教授 (00025488)

Co-Investigator(Kenkyū-buntansha) OSADA Masayuki  Sapporo Campus, Associate Professor, 教育学部・札幌校, 助教授 (10107229)
HASEGAWA Izumi  Sapporo Campus, Professor, 教育学部・札幌校, 教授 (50002473)
OKUYAMA Tetsuro  Asahikawa Campus, Professor, 教育学部・旭川校, 教授 (60128733)
KITAYAMA Masashi  Kushiro Campus, Associate Professor, 教育学部・釧路校, 助教授 (80169888)
OKUBO Kazuyoshi  Sapporo Campus, Professor, 教育学部・札幌校, 教授 (80113661)
櫻田 邦範  北海道教育大学, 教育学部・札幌校, 教授 (30002463)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 1999: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1998: ¥2,300,000 (Direct Cost: ¥2,300,000)
KeywordsNoetherian local ring / Homological conjectures / Frobenius map / p-adic representation / Bertini Theorem / Witt ring / big Cohen-Macaulay modules / Structure theorem of complete local rings / Witt環
Research Abstract

Construction of big Cohen-Macaulay modules
Homological conjectures on finitely generated modules over Noetherian local rings are basic and deep problems in commutative algebra. M. Hochster has shown that the existence of a big Cohen-Macaulay module for a given system of parameters of a local ring implies the intersection conjecture and that any local ring which contains a field, or equal characteristic local ring, has such a module.
So, to prove the existence of a big Cohen-Macaulay module over unequal characteristic local ring is very important. We have shown that the following study is useful to solve the problem above :
1) p-adic representation of elements in an unequal characteristic complete local ring,
2) Flenner's Bertini Theorem,
3) a lifting of Frobenius map to the Henselization of an unequal characteristic complete local ring.
Construction of bad Noetherian local rings
From Akizuki's and Nagata's examples it is well-known that some bad examples of Noetherian local rings are meaningful.
We have constructed some such local rings, following C. Rotthaus, T. Ogoma and R.C. Heitmann, for example :
1) Three dimensional catenary factorial local domain, which is not universally catenary,
2) Two dimensional noraml local domain of characteristic 0, which is not analytically reduced,
3) Three dimensional local domain of characteristic 0, whose derived normal ring is not Noetherian.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] J.Nishimura: "Examples of local rings"第19回可換環論シンポジウム報告集. 19. 87-96 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J.Nishimura: "A Few Examples of Local Rings,I"Journal of Mathematics Kyoto University. (to appear). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J.Nishimura: "A Few Examples of Local Rings,II"Journal of Mathematics Kyoto University. (to appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J.Nishimura: "A Few Examples of Local Rings,III"Journal of Mathematics Kyoto University. (to appear). (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Nakazi-K.Okubo: "ρ-contraction and 2×2 matrix"Linear Algebra and its Application. 283. 165-169 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Nakazi-K.Okubo: "Generalized numerical radius and unitary ρ-dilation"Mathematica Japonica. 50. 347-354 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J Nishmura: "Examples of local rings"Proceeding of 19th symposium on commutative rings. 19. 87-96 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J Nishmura: "A Few Examples of Local Rings"Journal of Mathematics Kyoto University. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J Nishmura: "Few Examples of Local Rings"Journal of Mathematics Kyoto University. (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J Nishmura: "A Few Examples of Local Rings"Journal of Mathematics Kyoto University. (to appear). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Nakazi- K. Okubo: "p-contraction and 2×2 matrix"Linear Algebra and its Application. 283. 165-169 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Nakazi-K. Okubo: "Generalized numerical radius and unitary p-dilation"Mathematica Japonica. 50. 347-354 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] J.Nishimura: "Examples of local rings"第19回可喚環論シンポジウム報告集. 19. 87-96 (1997)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Nishimura: "A Few Examples of Local Rings, I"Journal of Mathematics Kyoto University. (to appear). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Nishimura: "A Few Examples of Local Rings, II"Journal of Mathematics Kyoto University. (to appear). (2001)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Nishimura: "A Few Examples of Local Rings, III"Journal of Mathematics Kyoto University. (to appear). (2002)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Nakazi,K.Okubo: "ρ-contraction and 2×2 matrix"Linear Algebra and Application. 283. 165-169 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Nakazi,K.Okubo: "Generalized numerical radius and unitary ρ-dilation"Mathematica Japonica. 50. 347-354 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Nishimura: "Eamples of local rings" 第19回可換環論シンポジウム報告集. 19. 87-96 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] J.Nishimura: "A Few Examples of Local Rings,I" Journal of Mathematics Kyoto University. (to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] J.Nishimura: "A Few Examples of Local Rings,II" Journal of Mathematics Kyoto University. (to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Nakazi-K.Okubo: "ρ-contraction and 2×2 matrix" Linear Algebra and its Application. 283. 165-169 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Nakazi-K.Okubo: "Generalized numerical radius and unitary ρ-dilation" Mathematica Japonica. (to appear).

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi