• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on Algebraic Geometry and Coding Theory

Research Project

Project/Area Number 10640006
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of Tokyo

Principal Investigator

KATSURA Toshiyuki  Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (40108444)

Co-Investigator(Kenkyū-buntansha) KATO Akishi  Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (10211848)
KOHNO Toshitake  Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (80144111)
KAWAMATA Yujira  Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (90126037)
TERADA Itam  Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (70180081)
TERASOMA Tomohide  Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (50192654)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2000: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1999: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 1998: ¥1,200,000 (Direct Cost: ¥1,200,000)
Keywordscode / Hamming code / K3 purface / modulic space / formal Brauer group / Cartier operator / Chem class / Artin invariant / カルチェ作用素 / ピカール数 / チャウ群 / アーベル曲面 / 正標数 / 高さ / フロベニウス写像 / K^3曲面 / 形式的ブラウアー群 / ハイト / モジュライ
Research Abstract

As for coding theory, we defined the notion of isolated radius of a code and showed that the isolated radius for the [7, 4, 3]-Hamming code is equal to 2√<2>/7 11.
As for algebraic geometry, we mainly investigate the structure of the moduli spaces of K3 surfaces. Let X be a K3 surface defined over an algebraically closed field k of characteristic p>0, and Φ_X the formal Brauer group of X.We denote by h the height of Φ_X, and denote by C the Cartier operator on Z_1, where Z_1 is the sheaf of d-closed 1-forms. We define inductively the sheaf Z_i as Ker dC^<i-1>. Let M be the moduli stack of polarized K3 surfaces of degree 2d (d is a positive integer, d×2d) and let π : χ→M be the universal family. We set υ=π_*Ω^2_<χ/M>. This gives an element of Chow ring of M.For an integer h (1【less than or equal】h【less than or equal】10), we set M^<(h)>={X∈M|height Φ_X【greater than or equal】h}. Let X be a K3 surface with polarization D of degree 2d and let x∈M be a point which corresponds to (X, D), and I … More m H^1(X,Z_h) the image of the homomorphism H^1(X,Z_h)→H^1(X,Ω^1_X) which is induced by the natural inclusion Z_h→Ω^1_X. Assume the height of the formal Brauer group Φ_X is equal to h<∝. Then, we could prove Im H^1(X,Z_h)=21-h, and that the tangent space of M^<(h)> at x is naturally isomorphic to Im H^1(X,Z_h)∩D^⊥⊂H^1(X,Ω^1_X). In particular, we have dim M^<(h)>=20-h. Moreover, we could show that the class of M^<(h)> in the Chow group CH^<h-1>_Q(M) is given by (p^<h-1>-1) (p^<h-2>-1)...(p-1)υ.
Now we consider the case of B_2=ρ. For this case, we got some results on the structure of the locus with Artin invariant σ【less than or equal】3 related to the results by Shafarevich, but we don't reach the final understanding. To calculate Chern class of the locus whose Artin invariant is less than or equal to σ is also an interesting problem. We are now investigating this locus, using the method by Pragacz. Similar results hold for abelian surfaces. We are now going to examine the cases of Calabi-Yau manifolds and hypersurfaces. Less

Report

(4 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (32 results)

All Other

All Publications (32 results)

  • [Publications] T.Katsura: "On the diotribution of linear codes around the [7, 4, 3]-Hamming code."Max-Planck-Institnt fur Mathematik Preprint Series. 99-3. 1-8 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 桂利行: "代数曲線の基礎"電気情報通信学会論文誌. J82-A no.8. 1191-1199 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] G.van der Gear & T.Katsura: "On a Stratification of the modali of K3 sunfaces"J.Eur.Math.Soc.. 2. 259-290 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 桂利行: "形式的ブラウワー群とK3曲面のモジュライ空間の構造"代数幾何シンポジウム記録. 84-88 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Katsura: "Formal Braver groups and the modulispaces of K3 and Aleutian smtaces in positive characteristic"Proc.of Confi on Algefiaic Geometry, Number Theory, Coding Theory and Cryptyniphy. 107-112 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kawamata: "On effective non-vanishing and lase-point-freeness"Asian J.Math.. 4. 173-182 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 桂利行: "代数幾何入門"共立出版. 202 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 桂利行: "デジタルの数学"数学のたのしみ21(日本評論社). 54-65 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Katsura: "On the distribution of linear codes around the [7,4,3]-Hamming code"Max-Planck-Institut fur Mathematik Preprint Series. 99-3. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Katsura: "Introduction to Algebraic Curves (in Japanese)"The Transactions of the Electronics, Information and Communications Engineers. vol.J82-A no.8. 1191-1199 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] G.van der Geer and T.Katsura: "On a stratification of the moduli of K3 surfaces"J.Eur.Math.Soc.. 2. 259-290 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Katsura: "Formal Brauer groups and the structure of the moduli spaces of K3 surfaces (in Japanese)"Proc.of Symp.on Algebraic Geometry, Kinosaki. 84-88 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Katsura: "Formal Brauer groups and the moduli spaces of K3 and abelian surfaces in positive characteristic"Proc.of the Fourth Conference on Algebraic Geometry, Number Theory, Coding Theory and Cryptography. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kawamata: "On effective non-vanishing and base-point-freeness"Asian J.Math.. 4. 173-182 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Katsura: "Mathematics on digital machine (in Japanese)"Sugaku-no-tanoshimi. no 21. 54-65 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Katsura: "Introduction to Algebraic Geometry (in Japanese)"Kyoritsu Publ.. (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] G.vander Geer & T.Katsura: "On a stratification of the moduli of K3 surfaces"J.Eur.Math.Soc.. 2. 259-290 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Katsura: "Formal Brauer groups and moduli spaces of K3 and abelian surfaces in positive characteristic"Proc.of Conf. on Algebraic Geometry, Number Theory, Coding Theory and Cryptography. 107-112 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Kawamata: "On effective non-vanishing and base-point-freeness"Asian J.Math.. 4. 173-182 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Terasoma: "Convolution theorem for non-degenerate maps and composite singularities"J.Alg.Geom.. 9. 265-287 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 桂利行: "デジタルの数学"数学のたのしみ21(日本評論社). 54-65 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 桂利行: "代数幾何学(「数学がわかる」)"アエラモック61(朝日新聞社). 22-25 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] G.Vander Geer,T.Katsura: "On a stratification of the moduli of K3 surfaces"J.of European Math.Soc.. (to appear).

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Katsura: "On the distribution of linear codes around the [7,4,3]-Hamming code"Max-Planck-Institut fur Mathematik,Raprint Series. 3. 1-8 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Terasoma: "Hodge structure of Gel'fand-Kapranov-Zelsvinski hypergeometric integral and Tursted Ehrhard polynomial"Proc.of the Taniguchi Symposium. 453-476 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y. Kawamata: "Subadjunction of lug canonical divisons"Amer.J. Math.. 120. 893-899 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] 桂 利行: "代数曲線の基礎"電子情報通信学会論文誌. J82-A,No.8. 1191-1199 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 桂 利行: "代数幾何入門"共立出版. 202 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.KATSURA: "On the distribution of linear codes areumd the [7,4,3]-Hamming code" Max-Plank-Institut fur Mathematik, Prepsint Series. 3. 1-8 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.TERASOMA: "Hodge structure of Gcl'fand-Kapranou-Zelevinski hypageenctric integral and Turisted Ehrhased polynomial" Proc.of the Taniguchi Symposium. 453-476 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.TERASOMA: "Convolution theorem for non-degenerate maps and composite singularities" J.Alg.Geom.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] 桂 利行: "代数幾何入門" 共立出版, 202 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi