• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hopf algebra smash product and Quantum Weyl algebra

Research Project

Project/Area Number 10640025
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOKAYAMA UNIVERSITY

Principal Investigator

NAKAJIMA Atsushi  Okayama University, Faculty of Environmental Science and Technology, Professor, 環境理工学部, 教授 (30032824)

Co-Investigator(Kenkyū-buntansha) ISHIKAWA Hirofumi  Okayama University, Faculty of Environmental Science and Technology, Professor, 環境理工学部, 教授 (00108101)
HIRANO Yasuyuki  Okayama University, Faculty of Science, Professor, 理学部, 助教授 (90144732)
IKEHATA Shuichi  Okayama University, Faculty of Environmental Science and Technology, Professor, 環境理工学部, 教授 (20116429)
KAJIWARA Tsuyoshi  Okayama University, Faculty of Environmental Science and Technology, Associate Professor, 環境理工学部, 助教授 (50169447)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥600,000 (Direct Cost: ¥600,000)
KeywordsGalois extension / derivation / generalized derivation / Jordan derivation / higher derivation / 微分加群 / 関手 / 一般化微分 / 余加群多元環 / 接合積 / ワイル代数 / 歪多項式環
Research Abstract

1. The notion of P-Galois extensions was introduced by K. Kishimoto. This notion contains that the usual Galois extensions, purely inseparable extensions and Hopf Galois extensions. We determine all cubic P-Galois extensions over a field except that P is a cyclic group. It is not known that the isomorphism classes of P-Galois extensions has a group structure or not. In our case, the isomorphism classes does not work well.
2. Let a be a ring and an M-bimodule. Let f be an additive map from A to M and ω an element in M. (f, ω) is called a generalized derivation of = f(x)y+xf(y)+xωy (x, y ∈ A). (f, ω) is a Bresar's generalized derivation and if A has an identity, they are equal. We give elementary relations of derivations, generalized derivations and Bresar's one and determine a functional relation between gDer(A, M), the set of all generalized derivations and Der(A, M), the set of all derivations from A to M. Using this result, we give a split short exact sequence with respect to M, gDer(A, M) and Der(A, M). Moreover, the universal mapping property for generalized derivations is given. The notion of generalized derivation is extended to Jordan and Lie derivations and we can get similar results to generalized Jordan derivations. Generalized higher derivations are also discussed.
In the stand point of Hopf algebras, the action of generalized derivation is a comodule algebra action. Therefore we have an application of these maps to Hopf Galois theory.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] Atsushi Nakajima: "Cubic P-Galore extensions over a field"Hokkaido Math. J.. 72・2. 321-328 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Atsushi Nakajima: "On categorical properties of generalized derivations"Scientiae Mathematicae. 2・3. 345-352 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Atsushi Nakajima: "Generalized Jordan derivations"Proc. of the Korea-China-Japan Int. Sym. on Ring Theory. (未定). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shuichi Ikehata: "Purely inseparable ring extensions and H-separable polynomials"Okayama Math. J.. 40. 55-63 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yasuyuki Hirano: "On the uniqueness of rings of coefficients in skew polynomial rings"Publ. Math. Debrecen. 54. 489-495 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Tsuyoshi Kajiwara: "Continuous crossed product of Hilbert C:-bimodules"International J. Math.. (未定). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Atsushi Nakajima: "Cubic P-Galois extensions over a field"Hokkaido Math. J.. 27(2). 321-328 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Atsushi Nakajima: "On categorical properties of generalized derivations"Scientiae Mathematicae. 2(3). 345-352 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Atsushi Nakajima: "Generalized Jordan derivations"Proceedings of the Third Korea-China-Japan International Symposium on Ring Theory. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Atsushi Nakajima: "On generalized derivations and higher derivations"Proceedings of the Third Symposium on Algebra, Languages and Computation. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Shuichi Ikehata: "Purely inseparable ring extensions and H-separable polynomials"Okayama Math. J.. 40. 55-63 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yasuyuki Hirano: "On the uniqueness of rings of coefficients in skew polynomial rings"Publ. Math. Debrecen. 54. 489-495 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Tsuyoshi Kajiwara: "Continuous crossed product of Hilbert CィイD1*ィエD1-bimodules"International J. Mathematics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Atsushi Nakajima: "On categorical properties of generalized derivations"Scientiae Mathematical. 2, No.3. 345-352 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Atsushi Nakajima: "Generalized Jordan Derivations"Proc. of the Korea-China-Japan Int. Sym. on Ring Theoy. 未定 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Shuichi Ikeharta: "Purely inseparable ring extensions and H-reparable polynordials"Okayama Math. J.. 40. 55-63 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hirofumi Ishikawa: "The Fourier coefficients of certain Mass wave form for To(2)"Jour. Fac. Environmental. Sci. and Tech. Okayama Univ.. 3. 5-9 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Tsuyoshi Kajiwara: "Hilbert C^*-modules and countably infinite continuous graphs"Jour. Fac. Environmental. Sci. and Tech. Okayama Univ.. 4. 77-80 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Atsushi Nakajima: "Cubric P. Galois extensions over a field" Hokkaido Math J.27.2. 321-328 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Yasuyuki Hirano: "On the Uniqueness of rings of coefficients in show polynomial rings" Publ.Meth.Debrecen. 54. (1999)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi