• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

STUDY ON THE COMPLEX AFFINE SPACE CィイD1NィエD1 AND ITS COMPACTIFICATION

Research Project

Project/Area Number 10640026
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKUMAMOTO UNIVERSITY (1999)
Hiroshima University (1998)

Principal Investigator

FURUSHIMA Mikio  KUMAMOTO UNIVERSITY, FACULTY OF SCIENCE, PROFESSOR, 理学部, 教授 (00165482)

Co-Investigator(Kenkyū-buntansha) ABE Makoto  OSHIMA NATIONAL COLLEGE OF MARITIME TECHNOLOGY, ASSOCIATED PROFESSOR, 一般科, 助教授 (90159442)
江口 正晃  広島大学, 総合科学部, 教授 (30037220)
吉田 敏男  広島大学, 総合科学部, 教授 (10033854)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 1999: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 1998: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsCOMPLEX AFFINE SPACES / COMPACTIFICATION / MOISHEZON / n次元複素アフィン空間 / 複素アフィン空間 / 複素多様体
Research Abstract

We investigated projective compactifications or non-projective Moishezon compactifications of CィイD13ィエD1 and the classification of minimal normal compactifications of CィイD12ィエD1/G, where G is a small finite subgroup of the general linear group GL(2,C), and we obtained several new results. We will state as follows. There are six types of projective compactifications of CィイD13ィエD1 with second Betti number equal to one. This was obtained by Furushima before. In this research, we gave a concrete construction of these six compactifications of C3 from the well-known compactifications (PィイD13ィエD1,PィイD12ィエD1), that is, we gave an explicit birational map of PィイD13ィエD1 to X which is biregular on CィイD13ィエD1-part. This finishes the projective classifications of such compactifications of CィイD13ィエD1.
Next, we also studied the structure of the non-projective compactifications (X,Y) of CィイD13ィエD1 with second Betti number equal to one. In this case, it is easy to see that the canonical divisor can be written as follow: KX=-rY (r>0 is an integer). In this research, we can show that the integer r is equal to one or two and that there are many new examples of such non-projective compactifications of CィイD13ィエD1.
Furthermore, we find that some technique developed in the study of compactifications of CィイD13ィエD1 can be applied to the classification of the minimal normal compactifications of CィイD12ィエD1/G, then we succeeded in its classification.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] 古島 幹雄: "Non-projective compactifications of C^3 III : A remark on indices"Hiroshima Math. J.. 29・(2). 295-298 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 阿部 誠・ 古島 幹雄・山崎 充裕: "Analytic compactifications of C^2/G"Kyushu J. Math,. (近刊). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 古島 幹雄: "A birational construction of projective compactifications of C^3 with second Bethinumber equal to one"Annali di Mathematika pura et appl. (近刊). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Furushima: "Non-projctive compactifications of CィイD13ィエD1II: (New Examples),"Kyushu J. Math.. 52,No.1. 149-162 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Abe, M.Furushima, and M.Tsuji: "Equicontinuity domain and disk property"Complex Variables. 39. 19-25 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Furushima,: "Non-projctive compactifications of CィイD13ィエD1III: A remark on indices"Hiroshima Math. J.. 29,No.2. 295-298 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Abe, M.Furushima, and M.Yamasaki: "Analytic compactifications of CィイD12ィエD1/G"Kyushu J. Math.. 54,No.1. 87-101 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Furushima: "A birational construction of projective compactifications of CィイD13ィエD1with second Betti number equal to one"Annali di Matematica pura ed applicata. to appear. (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 古島幹雄: "Non-projective compactifications of C^3 III:A remark on indices"Hiroshima Math.J.. 29・(2). 295-298 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 阿部誠,古島幹雄,山崎充裕: "Amalytic compactifications of C^2/G"Kyushu J.Math.. (近刊). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] 古島幹雄: "A birational construction of projictive compactifications of C^3 with second Betlinumber equal to one"Ammali di Mathematika pusa et appl.. (近刊). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Furushima: "Non-projectie compactifications of C^3 (II)" Kyushu J.Math.52. 149-162 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Furushima: "Non-projectie compactifications of C^3 (III)" Hiroshima Math.J.近刊. (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Abe,M.Furushima,M.tuji: "Eguicontinuity domains and duic property" Complex Variables. 近刊.

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Eguchi,S.Koizumi M.Maniuda: "The expresion of ltie Harish-Chandra C-functiors of senu-simple Lic grobps Spin(m.1.).STi(m.7)" J.Matt.Soc.Japan. 近刊 51-4. (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Eguchi,S.Koizumi,K.Kumahara: "An analogve of the Hardy theorevr for the Cartan motion group" Proc,Japan.Acad. 74-10. 149-151 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi