• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classification of homogeneous ideals in terms of the degrees of generic Grobner bases

Research Project

Project/Area Number 10640027
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHiroshima University

Principal Investigator

AMASAKI Mutsumi  Faculty of School Education, Hiroshima University, Associate Professor, 学校教育学部, 助教授 (10243536)

Co-Investigator(Kenkyū-buntansha) KAGEYAMA Sanpei  Faculty of School Education, Hiroshima University, professor, 学校教育学部, 教授 (70033892)
ISHIBASHI Yasunori  Faculty of School Education, Hiroshima University, professor, 学校教育学部, 教授 (30033848)
MIYAZAKI Chikashi  University of the Ryukyus, Faculty of Science, associate professor, 理学部, 助教授 (90229831)
植田 敦三  広島大学, 学校教育学部, 助教授 (50168621)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 1999: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1998: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsBourbaki sequence / homogeneous ideal / graded module / Grobner basis / Weierstrass basis / basic sequence / local cohomology / free resolution / リエゾン / descent / 反射的加群 / ブルバキ,列 / グレブナ基底 / ワイエルシュトラウス基 / 斉次素イデアル / 加群
Research Abstract

Let R be a polynomial ring in r indeterminates over an infinite field and M a homogeneous submodule of a finitely generated graded free module over R.
We first made clear the relation between generic Grobner bases and Weierstrass bases of M. It can be summarized as follows. If one takes a Grobner basis of M with respect to the term over position order arising from the reverse lexicographic order in a suitable way, then it is also a Weierstrass basis of M.
Next, we have given a proof to a fundamental theorm which will constitute a part of the core of our study in the long run.
Theorem1 : : : Let p be an integer lying between 2 and r - 2. Suppose that M satisfies the following conditions (1) and (2).
(1) For each integer i lying between r - p + 1 and r - l, the ith local cohomology of M vanishes.
(2) M is reflexive over R.
Then, there exists a homogeneous prime ideal I of R which fits into a long Bourbaki sequence with M. Conversely, if such a prime ideal I exists, then M satisfies conditions (1) and (2).
Theorem2 : : : If M satisfies condition (1) above, then there is a homogeneous complete intersection f_1, . . . , f_{p - 2} of R satisfying the following conditions.
(3) Let A be the factor ring of R defined by these p - 2 polynomials. Then, A is normal.
(4) There are a finitely generated torsion-free graded module D over A and a homomorphism g from M to D over R such that g induces an isomorphism of the ith local cohomologies of M and D for each integer i lying between 0 and T - p + 1.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] M.Amasaki: "Existence of homogeneous ideals fitting into long Bourbaki sequences"Proc.Amer.Math.Soc.. 127. 3461-3466 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Amasaki: "Generic Grobner bases and Weierstrauss bases of homogeneous submodules of graded free modules"J.Pure Appl.Algebra. (掲載決定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] C.Miyazaki: "Sharp bounds on Castelnuovo-Mumford regularity"Trans.Amer.Math.Soc.. (掲載決定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E.Ballico and C.Miyazaki: "Generic hyperplane section of curves and an application to regularity bounds in positive characteristic"J.Pure Appl.Algebra. (掲載決定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Amasaki: "Existence of homogeneous idea]s fitting into long Bourbaki sequences"Proc. Amer. Math. Soc.. 127. 3461-3466 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Amasaki: "Generic Grobner bases and Weierstrass bases of homogeneous submodules of graded free modules"J. Pure Appl. Algebra. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] C. Miyazaki: "Sharp bounds on Castelnuovo-Mumford regularity"Trans. Amer. Math. Soc.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E. Ballico and C. Miyazaki: "Generic hyperplane section of curves and an application to regularity bounds in positive characteristic"J. Pure Appl. Algebra. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Amasaki: "Existence of homogeneous ideals fitting into long Bourbaki sequences"Proc. Amer. Math. Soc.. 127. 3461-3466 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] M. Amasaki: "Gneric Grobner bases and Weierstrass bases of homogeneous submodules of graded free modules"J. Pure Appl. Algebra. (掲載決定).

    • Related Report
      1999 Annual Research Report
  • [Publications] C. Miyazaki: "Sharp bounds on Castelnuovo-Mumford regularity"Trans. Amer. Math. Soc.. (掲載決定).

    • Related Report
      1999 Annual Research Report
  • [Publications] E. Ballico and C. Miyazaki: "Generic hyperplane section of curves and an application to regularity bounds in positive characteristic"J. Pure Appl. Algebra. (掲載決定).

    • Related Report
      1999 Annual Research Report
  • [Publications] Mutsumi Amasaki: "Existence of homogeneous ideals fitting in to long Bourbaki sequences" Proceeding of the American Mathematical Society. 発表予定.

    • Related Report
      1998 Annual Research Report
  • [Publications] Mutsumi Amasaki: "Generic Grobner bases and Weierstrass bases of homogeneous submedules of graded free modules" Proceedings of the Bucks baum Conference, Catania, April 27 - May 15, 1998. 発表予定.

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi