• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mean values and Asymptotic Behavior on Arithmetical Functions

Research Project

Project/Area Number 10640029
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionYamaguchi University

Principal Investigator

KIUCHI Isao  Faculty of Science, Yamaguchi University, Associate Professor, 理学部, 助教授 (30271076)

Co-Investigator(Kenkyū-buntansha) TANIGAWA Yoshio  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (50109261)
YANAGIHARA Hiroshi  Faculty of Engineering, Yamaguchi University, Associate Professor, 工学部, 助教授 (30200538)
MASUMOTO Makoto  Faculty of Science, Yamaguchi University, Associate Professor, 理学部, 助教授 (50173761)
KIKUMASA Isao  Faculty of Science, Yamaguchi University, Associate Professor, 理学部, 助教授 (70234200)
MATSUMOTO Kohji  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (60192754)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 1999: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 1998: ¥1,800,000 (Direct Cost: ¥1,800,000)
KeywordsRiemann zeta-function / Divisor function / Riemann-Siegel formula / Omega results / Multiplicative functions / Mean value theorems / 平均値定理 / 平均値公式 / short intervals / 数論的関数 / Ω-結果 / Voronoiの公式
Research Abstract

This investigations are on the mean value theorems of Riemann's zeta-function, and an exponential sum involving the generalized divisor function. We study it by using the methods of Jutila, the approximate functional equation of Motohashi, the Atkinson formula of Matsumoto-Meurman and the Riemann-Siegel formula, introduced by M. Jutila, M. Motohashi, K. Matsumoto and T. Meurman in their consideration for the theory of zeta-function. Particular we study mean square of the remainder term for their summatory functions. The main subjects treated here are the following five : (1)the divisor problem for short intervals, (2)the Matsumoto-Meurman formula for short intervals, (3)mean square for the non-symmetric form of the approximate functional equation of Motohashi, (4)mean square for the non-symmetric form of the approximate functional equation of Motohashi for short intervals, (5)mean square for the Riemann-Siegel formula. For each subject, we have obtained the following results and forekn … More owledges :
(1), (2)The mean square of the remainder term for summatory of the divisor function for short intervals was first by M. Jutila, who obtained the asymptotic formula involving the integral for short intervals. The result of this note is the mean value formula of the remainder term for an exponential sum involving the generalized divisor functions for short intervals. This result is an analoge of Jutila's result. Similarly, by using Jutila methods, we are derived to the mean value theorem of the remainder term for the mean value formula of the Riemann zeta-function in the critical strip.
(3), (4)A very estimation for remainder term of the approximate functional equation for the square of Riemann zeta-function was first obtained by Hardy-Littlewood in 1929, but Motohashi improved it to an analogue of the Riemann-Siegel formula for the square of the Riemann zeta-function in 1983. The results of this note are derived to the mean value formula for remainder term, and the mean value theorem of this remainder term for short intervals.
(5)As application of the Riemann-Siegel formula, we have the even power moments for the remainder term of this formula. Less

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] I.Kiuchi and Y.Tanigawa: "The mean value theorem of the divisor problem for short intervals"Archiv der Math. 71. 445-453 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] I.Kiuchi and Y.Tanigawa: "A mean value theorem of the approximate functional eguation of S^2(s)for thort intervals"Journal of Ramanujan Mathmatical Society. (印刷中). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] I.Kiuchi: "On the mean value formula for the non-symmetric form of the approximate functional eguation of S^2(s)in the critical strip"Pulbicationes Mathmatica Debrecen. (印刷中). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 木内功,谷川好男: "短区間におけるDirichlet約数問題の平均値定理について"京都大学数理解析研究所講究録. 1060. 224-230 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 木内功,柳沢直樹: "Riemannゼータ関数の近似関数等式に対する平均値公式"京都大学数理解析研究所講究録. 1091. 251-255 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] I.Kiuchi and Y.Tanigawa: "Number Theory and Its Applications,Developments in Math.Vol.2"Kluwer Academic Publishers. 231-240 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KIKUCHI, I and TANIGAWA, Y: "The mean value theorem of the divisor problem for short intervals"Archiv der Math,. 71. 445-453 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KIKUCHI, I and TANIGAWA, Y: "A mean value theorem of the approximate functional equation of ζィイD12ィエD1 (s) for short intervals"Journal of Ramanujan Mathematical Society,. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KIKUCHI, I: "On the mean value formula for the non-symmetric form of the approximate functional equation of ζィイD12ィエD1 (s) in the critical strip"Publicationes Mathematicae Debrecen,. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KIKUCHI, I and TANIGAWA, Y: "The mean value theorem of the divisor problem for short intervals"RIMS,. 1060. 224-230 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KIKUCHI, I and YANAGISAWA, N.: "On the mean value formulas for the approximate functional equation of the Riemann zeta-function"RIMS. 1091. 251-255 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KIKUCHI,I and TANIGAWA,Y,: "The mean value theorem of the Riemann zeta-function in the critical strip for short intervals Number theory and its applications,Developments in Math.Vol.2(ed. by K.Gyory and KANEMITSU,S),"Kluwer Academic Publishers.. 231-240 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Isao Kiuchi and Yoshio Tanigawa: "A mean value theorem of the approximate functional equation of ζ^2(s) for short intervals"Journal of Ramanujan Mathematical Society. (印刷中). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Isao Kiuchi: "On the mean value formula for the non-symmetric from of the approximate functional equation of ζ^2(s) in the critical strip"Publicationes Mathmaticae Debrecen. (印刷中). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] 木内功,柳沢直樹: "Riemanゼータ関数の近似関数等式に対する平均値公式"京都大学数理解析研究所講究録. 1091. 251-255 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Isao Kiuchi and Yoshio Tanigawa: "The mean value theorem of the divisor problem for short intervals" Archiv der Math. 71. 445-453 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 木内功,谷川好男: "短区間におけるDirichlet約数問題の平均値定理について" 京都大学数理解析研究所講究録. 1060. 224-230 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi