• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on homogeneous projective varieties by Lie algebra and algebraic geometry

Research Project

Project/Area Number 10640046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionFukui University (2000-2001)
Waseda University (1998-1999)

Principal Investigator

YASUKURA Osami (2000-2001)  Fukui University, Faculty of Engineering, Associated Professor, 工学部, 助教授 (00191122)

楫 元 (1998-1999)  早稲田大学, 理工学部, 教授 (70194727)

Co-Investigator(Kenkyū-buntansha) MAEDA Hidetoshi  Fukui University, Faculty of Engineering, Associated Professor, 理工学部, 助教授 (10229312)
保倉 理美  福井大学, 工学部, 助教授 (00191122)
原 伸生  早稲田大学, 理工学部, 助手 (90298167)
野間 淳  横浜国立大学, 教育人間科学部, 助教授 (90262401)
Project Period (FY) 1998 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2001: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1998: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsPolarized varieties / Vector bundles / Algebraic geometry / Adjoint varieties / Symplectic triple systems / Contact type gradtion / Freudenthal varieties / Secant variety / 等質性 / symplectic triple system / 射影代数幾何 / 複素単純リー代数 / symplectic triple systems / 射影幾何学 / 射影多様体 / 階数別リー代数 / symplectic3項系 / フロベニウス射 / tight closure / 定義方程式 / イニシャルイデアル / 等質射影多様体 / 階数別Lie代数 / fight・closure / ample vector bundle / ガウス射 / secant多様体 / 有理特異点
Research Abstract

H. Maeda gave the following results :
(1) Let E be an ample vector bundle of rank n-2 on a complex projective manifold of dimension n having a section whose zero locus Z is an algebraic surface of Kodaira dimension 1. Then the structure of E is completely determined. This generalizes Sommese and Shepherd-Barron's results on ample divisors.
(2) A classification of the polarized varieties (X, E) consisting of a smooth complex projective variety X of dimension n and an ample vector bundle E of rank n-1 on X such that E has a section whose zero locus is a smooth elliptic curve. And the property of E is investigated when E is very ample having a section whose zero locus equals a hyperelliptic curve of genus non less than two.
(3) In particular, a classification of such (X, E)'s is given when the genus of Z equals two. A classification of the polarized varieties (X, E) consisting of a smooth complex projective variety X of dimension n and an ample vector bundle E of rank n-r on X such that E has a section whose zero locus Z is a smooth r-dimensional submanifold of X when Z contains a bielliptic curve section.
O. Yasukura, in collaboration with H. Kaji (Waseda Univ., Japan and IMPA, Brasil), gave a concrete investigation on the relations among three objects : the adjoint varieties, symplectic triple systems and the gradation of contact type for complex simple Lie algebras. And they described and proved projective geometric properties on Freudenthal varieties in terms of the concept,of symplectic triple systems. In particular, for the adjoint varieties, the orbit decomposition and projective geometric description of the secant varieties are given. For Freudenthal varieties, the linear sectional relation with the corresponding adjoint varieties and an essential proof for the homogeneity are obtained as well as several other proves.

Report

(5 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] A.Lanteri, H.Maeda: "Elliptic surfaces and ample vector bundles"Pacific Journal of Mathematics. 200-1. 147-157 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] A.Lanteri, H.Maeda: "Special varieties in adjunction theory and ample vector bundles"Mathematical Proceedings of the Cambridge Phil. Soc.. 130-1. 61-75 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] A.Lanteri, H.Maeda: "Ample vector bundles of curve genus one"Canadian Mathematical Bulletin. 42-2. 209-213 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Kaji, O.Yasukura: "Tangent loci and certain linear sections of adjoint varieties"Nagoya Mathematical Journal. 158. 63-72 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Kaji, O.Yasukura: "Secant varieties of adjoint varieties : orbit decomposition"Journal of Algebra. 227. 26-44 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Kaji, M.Ohno, O.Yasukura: "Adjoint varieties and their secant varieties"Indagationes Mathematicae. 10. 45-57 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] A. lanteri and H. Maeda: "Special varieties in adjunction theory and ample vecto bundles"Pacific Journal of Mathematics. 200-1. 147-157 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] A. Lanteri and H. Maeda: "Ample vector bundles of curve genus one"Mathematical Proceedings of the Cambridge Philosophical Society. 130-1. 61-75 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Kaji and O. Yasukura: "Tangent loci and certain linear sections of adjoint varieties"Canadian Mathematical Bulletin. 42-2. 209-213 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Kaji and O. Yasukura: "Secant varieties of adjoint varieties : orbit decomposition"Nagoya Mathematical Journal. 158. 63-72 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Kaji, M. Ohno and O. Yasukura: "Adjoint varieties and their secant varieties"Journal of Algebra. 227. 26-44 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Antonio Lanteri, Hidetoshi Maeda: "Elliptic surfaces and ample vector bundles"Pacific Journal of Mathematics. 200・1. 147-157 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] A.Lanteri,H.Maeda: "Elliptic surfaces and ample vector bundles"Pacific J.Math.. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Maeda,A.J.Sommese: "Very ample vector bundles of curve genus two"Arch.Math.(Basel). (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Kaji,O.Yasukura: "Tangentloci and certain linear sections of adjoint varieties"Nagoya J.Math.. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Kaji,O.Yasukura: "Secant varieties of adjoint varieties-orbit decomposition-"J.Algebra. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] A.Lanteri,H.Maeda: "Ample vector bundles of curve genus one"Canad.Math.Bull.. 42・2. 209-213 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] N.Hara: "A characteristic p pcoof of Wahl's vanishing theorem"Arch.Math.(Basel). 73. 256-261 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] A.Noma: "Gauss maps with nontrivial separable degree in positive char."Journal of Pure and Appl.Alg.. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] N.Hara: "Geometric interpretation of tight closure and test ideals"Trans.Amer.Math.Soc.. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Kaji,M.Ohno,O.Yasukura: "Adjoint vavieties and their Secant varieties" Indagations of Mathematics. (発表予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] H.Kaji: "Homocenecus pcojective varieties with degenerate secants" Transactiors of A.M.S.(発表予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] N.Hara: "A characterization of vatonal singularities interms of injectvity of Frobenius maps" Amer.J.Math.120. 981-996 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] H.Maeda: "Ample vector baudles of small carve genera" Arch.Math.(Basel). 70・3. 239-243 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] A.Noma: "Ample and spanned vector bundles of top Chera humber two" Matem'atica contemporanea. 14. 101-113 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Ohno: "On projective manifolds with degenerate secaut varieties" Matem'atica contemporanea. 14. 115-127 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi