• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Study on Galois Theory for the Actions of Hopf Algebras

Research Project

Project/Area Number 10640052
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNiihama National College of Technology

Principal Investigator

YANAI Tadashi  Niihama Nat. Col. Tech., Eng. Sci., Ass. Prof., 数理科, 助教授 (50220174)

Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 1999: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1998: ¥900,000 (Direct Cost: ¥900,000)
KeywordsHopf algebra / Galois theory / ring theory
Research Abstract

Let R be a prime ring, Q the symmetric Martindale quotient ring of R and H a finite dimensional pointed Hopf algebra (over a field) with antipode S acting on Q in a continuous and X-outer way. SィイD4-ィエD4 represents the inverse map of S, K the center of Q, and K#H the smash product algebra.
Suppose that the following condition is satisfied : (*) any right comodule subalgebra of K#H containing K is a Frobenius extension over K.
Then, the following results were obtained.
1. For a right H-comodule subalgebra Λ ⊆ K#H containing K, any object in ィイD2ΛィエD2MィイD1HィエD1 is free over Λ.
2. The set of left integrals of Λ is a 1-dimensional right K-space and a nonzero left integral generates Λ in ィイD2KィエD2MィイD3H(/)KィエD3.
3. Define the maps κ,μ : K#H → K#H by κ(α#h) = ΣSィイD4-ィエD4hィイD21ィエD2 ・ α#ShィイD22ィエD2 and μ(α#h) = ΣSィイD4-ィエD4μηζααhα, where α∈ K, h∈ H. Then, if ζ(resp. η) is a left (resp. right) integral of Λ, there exists α,α' ∈ K and group like elements σ,σ' ∈ H so that κ(ζ) = (α#δ)η and μ(η) = ζ(α'#δ').
4. There exists a one to one Galois-type correspondence between the set of all rationally complete subrings R containing the subring of invariants RィイD1HィエD1 and the set of all right comodule subalgebrans of K#H containing K. This result generalized the preceding study concerning the Galois correspondence of the actions of pointed Hopf algebras.
We further research whether the condition (*) is satisfied for any continuous and X-outer action of finite dimensional pointed Hopf algebra.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] T. Yanai: "Automorphic-differential identities and actions of pointed coalgebras on vings"Proceeding of the American Mathematical Society. 126. 2221-2228 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Yanai: "Faithful actions of pointed coalgebras on vings"Mathematica Japonica. 51. 83-88 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Yanai: "Frobenius extensions of right comoaule algebras"Memoirs of Niihama National College of Technology. 36. 97-101 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Yanai: "Automorphic-differential identities and actions of pointed coalgebras on rings"Proceedings of the American Mathematical Society. 126. 2221-2228 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Yanai: "Faithful actions of pointed coalgebras on rings"Mathematica Japonica. 51(1). 83-88 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Yanai: "Frobenius extensions of right comodule algebras"Memoirs of Niihama National College of Technology. 36. 97-101 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Yanai: "Automorphic-differential identities and actions of pointed coalgebras or vings"proceedings of the American Mathematical Society. 126. 2221-2228 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] T. Yanai: "Faithful actions of pointed coalgebras on vings"Mathematica Japonica. 51 (1). 83-88 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T. Yanai: "Frobenins extensions of right comodule algebras"Memoirs of Niihama National College of Technology. 36. 97-101 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Yanai: "Automorphic-differential identities and actions of pointed coalgebras on rings" Proceedings of the American Mathematical Society. 126. 2221-2228 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] T.Yanai: "Faithful actions of pointed coalgebrao on rings" Mathematica Japonica. 51(2). (2000)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi