• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Gauge theory and sympletic, contact geometry

Research Project

Project/Area Number 10640070
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

OHTA Hiroshi  Nagoya University, Graduate school of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (50223839)

Co-Investigator(Kenkyū-buntansha) TSUCHIYA Akihiro  Nagoya University, Graduate school of Mathematics, Profesor, 大学院・多元数理科学研究科, 教授 (90022673)
SATO Hajime  Nagoya University, Graduate school of Mathematics, Profesor, 大学院・多元数理科学研究科, 教授 (30011612)
KOBAYASHI Ryoichi  Nagoya University, Graduate school of Mathematics, Profesor, 大学院・多元数理科学研究科, 教授 (20162034)
FUKAYA Kenji  Kyoto University, Department of Mathematics, Profesor, 大学院・理学研究科, 教授 (30165261)
MINAMI Kazuhiko  Nagoya University, Graduate school of Mathematics, Associate Profesor, 大学院・多元数理科学研究科, 助教授 (40271530)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,700,000 (Direct Cost: ¥3,700,000)
Fiscal Year 1999: ¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1998: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsSymplectic geometry / monopole equation / contact structure / Langragian submanifold / Floer homology / Arnold conjecture / simple singularities / 特異点 / 接触幾何 / Floerホモロジー / ラグランジアン / A_∞代数
Research Abstract

1. We proved that the intersection form of any symplectically filling 4-manifold of the link around the simple singularity CィイD12ィエD1/Γ is negative definite. For the proof, we showed a vanishing theorem on the Seiberg-Witten invariants. In the case Γ = EィイD28ィエD2, we proved the intersection form of any minimal symplectically filling 4-manifold is equivalent to EィイD28ィエD2. Moreover we obtained some topological restriction of symplectically filling 4-manifolds for the simply elliptic singularities. These are joint works with K. Ono.
2. We investigated obstructions to define Langrangian intersection Floer homology in general situation. We constructed a system of the obstruction classes, which are Q-homology classes on the Lagrangian submanifold. We proved that if our obstruction classes vanish, then we can define the Floer homology. For the construction, we studied orientation problem of moduli spaces of J-holomorphic disks. In particular, we obtained a sufficient condition for the moduli spaces to be orientable. Furthermore we applied our obstruction theory and modified Floer homology theory to the Arnold conjecture for Lagrangian intersections, the Arnold-Givental conjecture and the Maslov index conjecture. These are joint works with K. Fukaya, M. Kontsevich, Y.-G. Oh and K.Ono.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] Hiroshi Ohta: "Simple singularities and topology of symplertically filling 4-manifold"Commentarii Mathematici Helvetici. 74・4. 575-590 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Ryoichi Kobayashi: "Holomorphic curves in Abelian varieties"Japanese J. Math.. 26・1. 1-22 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hajime Sato: "Schwarzian derivatives of contact diffeomorphisms"Lobacherskii J. Math.. 4. 89-98 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kazuhiko Minami: "Magnetization process of the S=1/2 and 1 ferrimagnetic chain and dimer"J. Phys. Soc. Japan. 68. 2214-2217 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Zero loop open string on contangent bundle and Morse homotopy"Asian Jour. of Math.. 1. 96-180 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kaoru Ono: "On Arnold's conjecture for sympletic fixed points"Banach Center Publications 45. 1998. 24 (13)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 深谷賢治: "シンプレクティック幾何学"岩波書店. 400 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi Ohta: "Simple singularities, and topology of symplectically fikking 4-manifold"Commentarii, Math. Helu.. 74-4. 575-590 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Ryouichi Kobayashi: "Holomerphic curves in Abelian varieties"Japanese J. Math.. 26-1. 1-22 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hajime Sato: "Schwarzian derivatives of contact diffeomerphisius"Lobachevskii J. Math. 4. 89-98 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] kazuhiko Minami: "Magnetization process of the S=1/2 and 1 ferrimagnetic chain and dimer"J. Phys. Soc. Japan. 68. 2214-2217 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Zero-loop open string on cotangent bundle and Morse homotopy"Asian J. Math. 1. 96-180 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kaori Ono: "On Arnold's conjecture for symplectic fixed points"Babach Center Publications. 45. 13-24 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kenji Fukaya: "Symplectoc geometry"Iwanami-Shoten. 400 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi Ohta: "Simple singularities and topology of symplectionally filling 4-manifold"Commentarii Mathematici Helvetici. 74・4. 575-590 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Ryoichi Kobayashi: "Holomaphic curves in Abclian varieties"Japanese J.Math.. 26・1. 1-22 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hajime Sato: "Schwarziau derivatives of contact diffeomorplusms"Lobachevskii J.Math. 4. 89-98 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kazuhiko Minami: "Magnetization process of the S=1/2 and I ferrimagnetic chain and diuer"J. Phys. Soc. Japan. 68. 2214-2217 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kenji Fukaya: "Zero-loop open string on cotagnant bundle and Morse homotopy"Asian Jour. of Math. 1. 96-180 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kaoru Ono: "On Arnold's conjecture for sympleitic fixed points"Bauach Center Publications. 45. 13-24 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] 深谷賢治: "シンプレクティック幾何学"岩波書店. 400 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Hiroshi Ohta: "Simple singularities and topology of sympletically filling 4-manifold" Comm.Math.Hilv.(発表予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] Hajime Sato: "Third order ordinary differential equations and Legendre connections" J.Math.Soc.Japan. 50・4. 993-1013 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Kazuhiko Minami: "The susceptibility in anbitrary cliretims and specific heat of general Ising-type chains with uniform, periodic and random structures" J.Phys.Soc.Jpn.67. 2255-2269 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Kenji Fukaya: "Arnold Conjerture and Gromov-Witten inariant" Topology. (発表予定).

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi