• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Self maps of the suspension of H-spaces

Research Project

Project/Area Number 10640077
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionWakayama University

Principal Investigator

MORISUGI Kaoru  Faculty of Education, WAKAYAMA UNIVERSITY, Professor, 教育学部, 教授 (00031807)

Co-Investigator(Kenkyū-buntansha) KAWAKAMI Tomohiro  Faculty of Education, WAKAYAMA UNIVERSITY, Associate Professor, 教育学部, 助教授 (20234023)
OSHIMA Hideaki  Ibaraki University, Faculty of Science, Professor, 理学部, 教授 (70047372)
HEMMI Yutaka  Kochi University, Faculty of Science, Professor, 理学部, 教授 (70181477)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 1999: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1998: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsH-spaces / Samelson products / Whitehead products / fiber bundles / homotopy groups / self maps / ホップ空間 / ホモトピー / サメルソン積 / ホップ構成 / ホトヘッド積
Research Abstract

The summary of research results is as follows.
(a)Let X be an Hopf space. Oshima showed that the homotopy set of self maps of X [X, X] forms a group when X has at most 3-cells and he also determined the group structure of [X, X] for such spaces X.
(b)We studied the group structure [ΣX, ΣX], where ΣX is the suspension space of X. We determined the group structure in case that X = SU(3) and Sp(2). They are typical example of above space X. In general, the suspension map [X, X] → [ΣX, ΣX] is not a homomorphism.
(c)For general Hopf spaces, we can consider the Samelson products in [Y, X] when Y is a CW-complexes. The we found a formula which relates the Samelson product in [Y, X] and its suspension in [Y, ΩΣX] by using the generalized Hopf construction. The above item is an application of this formula.
(d)It is important to know what nilpotency the group [X, X] for a Hopf space X. However another important is to study the composition structure of the group [X, X]. We determined this composition structure for X = SU(3) and Sp(2). This structure looks like "Square ring" which Baues in Germany studied.
(e)Let MィイD1nィエD1 = SィイD1n-1ィエD1 UィイD22ィエD2eィイD1nィエD1 be the mod 2 Moore space. There is a canonical projection map P : MィイD1nィエD1 → SィイD1nィエD1. Given an element α∈ πィイD2κィエD2(SィイD1nィエD1), we studied when α has a lift to MィイD1nィエD1. One of our results is that the Whitehead square [ιィイD2nィエD2, ιィイD2nィエD2] does not have a lift for n ≠1, 3, or 7. This is the joint work with J.Mukai in Shinshu University.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] K. Morisugi: "Projective elements in K-theory and self map of ΣCP∞"J. Math. Kyoto Univ.. 38. 151-165 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Morisugi: "Hopf constructions, Samelson products and suspension maps"Contemporary Mathematics. 239. 225-238 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Hemmi and J. Lin: "Odd Generators of the mod 3 Cohomology of Finite H-Spaces"To appear in J. Math. Kyoto Univ.. 39. (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Miura and H. Oshima: "Self homotopy group of Hopf spaces with at most three cells"J. Math. Soc. Japan. 51. 71-92 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Oshima: "Self homotopy set of a Hopf space"Quart. Jour. Math. Oxford (2). 50. 483-495 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Kawakami: "Imbeddings of manifolds defined on an o-minimal structure on (R, +, ., <)"Bull. Korean Math Soc.. 36. 183-210 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Morisugi: "Projective elements in K-theory and self map of ΣCPィイD1∞ィエD1"J. Math Kyoto Univ.. Vol.38. 151-165 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Morisugi: "Hopf constructions, Samelson products and suspension maps"Contemporary Mathematics. Vol.239. 225-238 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hemmi and J.Lin: "Odd Generators of the mod 3 Cohomology of Finite H-spaces"To appear in J. Math. Kyoto Univ.. Vol.39. (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M.Mimura and H.Oshima: "Self homotopy groups of Hopf spaces with at most three cells"J. Math. Soc. Japan. Vol.51. 71-92 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H.Oshima: "Self homotopy set of a Hopf space"Quart. Jour. Math. Oxford (2). Vol.50. 483-495 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Kawakami: "Imbeddings of manifolds defined on an o-minimal structure on (R, +, ・, <)"Bull. Korean Math. Soc.. Vol.36. 183-210 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Morisugi: "Projective elements in K-thoery and self map of ΣCP^∞"J.Math Kyoto Univ.. 38. 151-165 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Morisugi: "Hopf constructions,Samelson products and suspension maps"Contemporary Mathematics. 239. 225-238 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Hemmi and J.Lin: "Odd Generators of the mod 3 Cohomology of Finite H-spaces"To appear in J.Math.Kyoto Univ.. 39. (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Mimura and H.Oshima: "Self homotopy groups of Hopf spaces with at most three cells"J.Math.Soc.Japan. 51. 71-92 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Oshima: "Self homotopy set of a Hopf space"Quart.Jour.Math.Oxford (2). 50. 483-495 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kawakami: "Imbeddings of manifolds defined on an o-minimal structure on (R,+,・,<)"Bull.Korean Math.Soc.. 36. 183-210 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 森杉 馨: "Projective elements in K-theory and self maps of ΣCP^∞" J.Math.Kyoto Univ.38. 151-165 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 三村護, 大嶋秀明: "Self homotopy groups of Hopf spaces with at most three cells" J.Math.Soc.Japan. 51. 71-92 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 築山耕三,大嶋秀明: "Bundle map theory in category of weak Hausdaft k-spaces" Mem.Fac.Sci.and Eng.Shimane Univ.31. 27-55 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 森杉 馨: "Hopf constructions,Samelson products and the suspension maps" To appear in Contemporary Mathematics.

    • Related Report
      1998 Annual Research Report
  • [Publications] 大嶋秀明: "Self homotopy sets of a Hopf space" To appear in Quart.J.Math.

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi