• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Self maps of Lie groups

Research Project

Project/Area Number 10640087
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionIBARAKI UNIVERSITY

Principal Investigator

OSHIMA Hideaki  IBARAKI UNIVERSITY, Faculty of Science, Professor, 理学部, 教授 (70047372)

Co-Investigator(Kenkyū-buntansha) ANDO Hiroshi  IBARAKI UNIVERSITY, Faculty of Science, Assistant, 理学部, 助手 (60292471)
TAKEUCHI Mamoru  IBARAKI UNIVERSITY, Faculty of Science, Lecturer, 理学部, 講師 (40007761)
MATSUDA Ryuki  IBARAKI UNIVERSITY, Faculty of Science, Professor, 理学部, 教授 (10006934)
HEMMI Yutaka  Kochi University, Faculty of Science, Professor, 理学部, 教授 (70181477)
MORISUGI Kaoru  Wakayama University, Faculty of Education, Professor, 教育学部, 教授 (00031807)
卜部 東介  茨城大学, 理学部, 教授 (70145655)
下村 勝孝  茨城大学, 理学部, 講師 (00201559)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1999: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsLie group / self map / homotopy / nilpotency class / Hopf space / rank / Samelson product / commutator / 冪零指数
Research Abstract

1. Let X be a connected CW Hopf space with a multiplication μ. For a pathconnected and pointed space A, the homotopy set [A, X] of continuous maps from A to X has a binary operation "+" induced from μ. We write ([A, X], +) = [A, X ; μ] which is an algebraic loop. Our first result is the following : If A and X are connected CW Hopf spaces with at most three cells, then [A, X ; μ] becomes a group and its group structure can be determined. By the way, there are fifteen connected CW Hopf spaces with at most three cells and they have in general many multiplications. Therefore there were many groups we should compute.
2. Let G be a connected Lie group and μィイD20ィエD2 the multiplication of G. Then the algebraic loop [A, G ; μィイD20ィエD2] is a group and it satisfies the relation : nil[A, G ; μィイD20ィエD2] 【less than or equal】 cat(A) as proved by G. W. Whitehead, where nil denotes the nilpotency class and cat denotes the Lusternik-Schnirelmann category with cat(*) = 0. We are interested in estimation of nil[A, G ; μィイD20ィエD2] from below. In the first place, though it is the most interested case, we have consider the case A = G. We have two conjectures :
(1) If G is simple, then nil[G, G ; μィイD20ィエD2] 【greater than or equal】 rank(G).
(2) If G is simple and rank(G) 【greater than or equal】 2, then nil[G, G ; μィイD20ィエD2] 【greater than or equal】 2.
Of course if (1) is affirmative then so is (2). Without the assumption "simple", two conjectures are in general false. We proved (1) affirmative when G is one of SO(3), SU(3), SU(4), Sp(2), Spin(7) and GィイD22ィエD2 ; and (2) affirmative when G is one of SU(5), SU(6), Sp(3), Spin(8), EィイD26ィエD2, EィイD28ィエD2, and FィイD24ィエD2. We determined the group [G, G ; μィイD20ィエD2] completely for G = SO(3), SU(3), Sp(2) and almost completely for G = GィイD22ィエD2. We have several fragmental results for G not simply connected or not simple.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] M.Mimura: "Self homotopy groups of Hopf spaces with at most three cells"J.Math.Soc.Japan. 51. 71-92 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H.O^-shima: "Self homotopy set of a Hopf space"Quart.J.Math.Oxford (2). 50. 483-495 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H.O^-shima: "Self homotopy group of the exceptional Lie group G_2"J.Math.Kyoto Univ.. (to appear). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H.O^-shima: "Non commutativity of self homotopy groups"Kodai Math.J.. (to appear). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Morisugi: "Hopf constructions,Samelson products and suspension maps"Contemporary Math.. 239. 225-238 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y.Hemmi: "Odd generators of the mod 3 cohomology of finite H-spaces"J.Math.Kyoto Univ.. (to appear). (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] M. Mimura: "Self homotopy groups of Hopf spaces with at most three cells"J. Math. Soc. Japan. Vol. 51. 71-92 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Oshima: "Self homotopy set of a Hopf space"Quart. J. Math. Oxford (2). Vol. 50. 483-495 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Oshima: "Self homotopy group of the exceptional Lie group GィイD22ィエD2"J. Math. Kyoto Univ.. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Oshima: "Non commutativity of self homotopy groups"Kodai Math. J.. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Morisugi: "Hopf constructions, Samelson products and suspension maps"Contemporary Math.. Vol. 239. 225-238 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Hemmi: "Odd generators of the mod 3 cohomology of finite H-spaces"J. Math. Kyoto Univ.. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 大嶋秀明: "Self homotopy set of a Hopf space"Quart.J.Math.Oxford (2). 50. 483-495 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 大嶋秀明: "Self homotopy group of the exceptional Lie group G_2"J.Math.Kyoto. (to appear). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] 大嶋秀明: "Non commutativity of self homotopy groups"Kodai Math.J.. (to appear).

    • Related Report
      1999 Annual Research Report
  • [Publications] 松田隆輝: "Note on the number of semistar-operations"Math.J.Ibaraki University. 31. 47-53 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 森杉 馨: "Hopf constructions,Samelson products and suspension maps"Contemporary Math.. 239. 225-238 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 逸見 豊: "Odd generators of the mod 3 cohomology finite H-spaces"J.Math.Kyoto. (to appear).

    • Related Report
      1999 Annual Research Report
  • [Publications] 大嶋秀明: "Self homotopy groups of Hopf spaces with at most three cells" J.Math.Soc.Japan. 51. 71-92 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 大嶋秀明: "Self homotopy set of a Hopf space" Quart.J.Math.To appear.

    • Related Report
      1998 Annual Research Report
  • [Publications] 大嶋秀明: "Bundle map theory in the category of weak Hausdorff k-spaces" Mem.Fac.Sci.Engi.Shimane Univ.31. 27-55 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 西尾昌治: "A mean value property of poly-temperatures on a strip domain" J.London Math.Soc.To appear.

    • Related Report
      1998 Annual Research Report
  • [Publications] 森杉 馨: "Projective elements in K-theory and self maps of ΣCP^∞" J.Math.Kyoto Univ.To appear.

    • Related Report
      1998 Annual Research Report
  • [Publications] 森杉 馨: "Hopf constructions,Samelson products and the suspension maps" Contemporary Math.To appear.

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi