• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of fractional Brownian motion

Research Project

Project/Area Number 10640107
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOchanomizu University

Principal Investigator

KASAHARA Yuji  Faculty of Science, Ochanomizu University, Prof., 理学部, 教授 (60108975)

Co-Investigator(Kenkyū-buntansha) KOSUGI Nobuko  Faculty of Science, Ochanomizu University, Assistant, 理学部, 助手 (20302995)
MAEJIMA Makoto  Faculty of Sci.Eng., Keio Univ., Prof., 理工学部, 教授 (90051846)
KANEKO Akira  Faculty of Science, Ochanomizu University, Prof., 理学部, 教授 (30011654)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2000: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1999: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1998: ¥800,000 (Direct Cost: ¥800,000)
Keywordsfractional Brownian motion / Brownian motion / arc-sine law / diffusion process / self-similar process / self similarity / local time / tail probability / Gaussian process / Tauberian theorem / occupation time
Research Abstract

1. Fractional Brownian motions are Gaussian processes having self-similarity. We studied the relationship between the Hearst index and the asymptotic behavior of the tail probabilities of their local times. In relation to this problem we studied the order of infinitesimal of the determinant of the covariance matrix as the dimension goes to infinity. We proved that it decreases exponentially and we found the relation between the exponent and the Hearst index. We also generalized the above results for more general Gaussian processes.
2. When we studied the above problem we noticed that Tauberian theorems of exponential types are essential, and we obtained some useful theorems on this subject. As an application we studied the distribution function of the sums of independent random variables which are positive and identically distributed.
3. We studied on some properties of self-similar processes.
4. It is well known that the amount of time that a Brownian motion spends on the half line obeys the arc-sine law. We tried to find similar results for fractional Brownian motions but failed. Instead, however, we obtained an interesting result for linear diffusions : We found a relation between the so-called speed measure of the diffusion and the asymptotic behavior of the occupation time on the half line.

Report

(4 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] Y.Kasahara and N.Kosugi: "Large deviation around the origin for sums of i.i.d.random variables."Natur.Sci.Rep.Ochanomizu Univ.. 51. 27-31 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] P.Embrechts and M.Maejima: "An introduction to the theory of self-similar stochastic processes."Proceedings of the Summer School on Mathematical Physics 1999: nternat.J.Modern Phys.B 14. 14. 1399-1420 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima,K.Sato,and T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments."Statist.Probab.Lett.. 47. 395-401 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima,K.Sato,and T.Watanabe: "Completely operator semi-selfdecomposable distributions."Tokyo J.Math.. 23. 235-253 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kasahara N.Ogawa: "A note on the local time of fractional Brownian motion"J.Theoret.Probab.. 12. 207-216 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kasahara,N.Kono,T.Ogawa: "On tail probability of local times of Gaussian processes"Stochastic Process.Appl.. 82. 15-21 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kasahara and N.Kosugi: "Large deviation around the origin for sums of i.i.d. random variables."Natur.Sci.Rep.Ochanomizu Univ.. 51, no.1. 27-31 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] P.Embrechts and M.Maejima: "An introduction to the theory of self-similar stochastic processes."Proceedings of the Summer School on Mathematical Physics 1999 : Internat.J.Modern Phys.B. 14, no.12-13. 1399-1420 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima, K.Sato, and T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments."Statist.Probab.Lett.. no.4. 395-401 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] M.Maejima, K.Sato, and T.Watanabe: "Completely operators emi-selfdecomposable distributions."Tokyo J.Math. 23, no.1. 235-253 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kasahara and N.Ogawa: "A note on the local time of fractional Brownian motion."J.Theoret.Probab. 12, no.1. 207-216 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kasahara, N.Kono, and T.Ogawa: "On tail probability of local times of Gaussian processes."Stochastic Process.Appl.. 82, no.1. 15-21 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Kasahara and N.Kosugi: "Large deviation around the origin for sums of i.i.d.random variables."Natur.Sci.Rep.Ochanomizu Univ.. 51. 27-31 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] P.Embrechts and M.Maejima: "An introduction to the theory of self-similar stochastic processes."Proceedings of the Summer School on Mathematical Physics 1999 : nternat.J.Modern Phys.B 14. 14. 1399-1420 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Maejima,K.Sato,and T.Watanabe: "Distributions of selfsimilar and semi-selfsimilar processes with independent increments."Statist.Probab.Lett.. 47. 395-401 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Maejima,K.Sato,and T.Watanabe: "Completely operator semi-selfdecomposable distributions."Tokyo J.Math.. 23. 235-253 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Kasahara & N.Ogawa: "A limit theorem for occupation times of fractional Brownian motion"J. Theoret. Probab.. 12. 207-216 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Kasahara et al.: "On tail probability of local times of Gaussian processes"Stoch. Proc. Appl.. 82. 15-21 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Kasahara et al.: "Tail probabilities of local times of Gaussian processes and diffusions"Trends in Prob. Rel. Anal.. 239-248 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Maejima et al.: "Operator semi-selfdecomposability, (C,Q)-decomposability and related nested classes"Tokyo J. Math.. 22. 473-509 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] M.Maejima et al.: "Exponents of semi-selfsimilar processes"Yokohama Math. J.. 47. 93-102 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] N.Kosugi: "Tauberian theorem of exponential type and its application to multiple convolution"J. Math. Kyoto Univ.. 39. 331-346 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Kasahara & N.Ogawa: "A limit theorem for occupation times of fractional Brownian motion" J.Theoret.Probab.12. 207-216 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.kasahara et al.: "On tail probability of local times of Gaussian processes" Stoch.Proc.Appl.(印刷中). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] N.Kosugi: "Functional limit theorem for occupation times of Gaussian processes -non-critical case" Osaka J.Math.(印刷中). (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] N.Kosugi: "Tauberian theorem of exponential type and its application to multiple convolution" J.Math.Kyoto Univ.(to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] A.Kaneko: "Liouville type theorem for solutions of infra-exponential growth of linear partial differential equations with constant coefficients" Natural Sci.Report Ochanomizu Univ.49. 1-5 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] A.Kaneko & A.Balandin: "Maximum Entropy Method for sign-altering functions" Inverse Problems. 15. 445-463 (1999)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi