• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Harmonic Analysis on Homogeneous Spaces and its Applications

Research Project

Project/Area Number 10640171
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of the Air

Principal Investigator

KUMAHARA Keisaku  The University of the Air, Department of Liberal Arts, Professor, 教養学部, 教授 (60029486)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Takashi  Tottori University, Department of Information and Knowledge Engineerings, Associate Professor, 工学部, 助教授 (90263491)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2000: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1999: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1998: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsuncertainty principle / Fourier transform / Hardy theorem / Cowling-Price theorem / Cartan motion group / motion group / semisimple Lie group / Riemannian symmetric space / カウリング・プライスの定理 / ヘルガソン・フーリエ変換 / Hardyの定理 / ウェーブレット / Fourier変換 / L^p版ハーディの定理
Research Abstract

We studied the properties of the Fourier transforms on homogeneous spaces of Lie groups. Especially, we focussed our attention on the the uncertainty principle for Lie groups. First, we generalized the Hardy theorem for the classical Fourier transform to the Cartan motion groups. We also established an L^p-version of the Hardy theorem, which is called the Cowling-Price theorem, for general motion groups.
Next we studied the uncertainty principle for semisimple Lie groups. We proved an analogue of the Hardy theorem for connected noncompact semisimple Lie groups. The theorem can be stated by the Fourier transforms corresponding to the continuous principal series of the group. We also succeeded to prove the Cowling-Price theorem for vector bundles over Riemannian symmtric spaces and for connected noncompact semisimple Lie groups.

Report

(4 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] 林農: "ウェーブレット解析の各種乱流データへの適用"鳥取大学工学部研究報告. 29-1. 155-166 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 江口正晃: "運動群に対する一つの不確定性原理"実解析シンポジウム. 1998. 122-126 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Masaaki Eguchi: "An analogue of the Handy theorem for the Cantan motion group"Proceedings of the Japan Academy. 74-A-10. 149-151 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiko Ebata: "Ageneralization of the Handy theorem to semisimple Lie groups"Proceedings of the Japan Academy. 75-A-7. 113-114 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Keisaku Kumahara: "On uncertainty principal for some Lie groups"1998 Colloquium Lectures, Hokkaido Univ.. 60. 49-50 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Masaaki Eguchi: "An L^P version of the Handy theorem for motion groups"Journal of the Australian Mathematical Society. A-68. 55-67 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 熊原啓作: "新訂解析学"放送大学教育振興会. 283 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 熊原啓作: "行列と群と等質空間"日本評論社. 207 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Masaaki Eguchi: "An L^p version of the Handy theorem for motion groups"J.Austral.Math.Soc.(Series A). 68. 55-67 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 熊原啓作: "行列と群と等質空間"日本評論社. 207 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Keisaku Kumahara: "A generalization of the Hardy theorem to semisinple Lie groups"Proceedings of the Japan Academy. 75.SerA No7. 113-114 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Keisaku Kumahara: "On uncertainty principle for some Lie groups"1998 Colloquium Lectures, Hokkaido Univ.Dept.of Math.. 60. 49-50 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 林農: "ウェーブレット解析の各種乱流データへの適用" 鳥取大学工学部研究報告. 29-1. 155-166 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 江口正晃: "運動群に対する一つの不確定性原理" 実解析学シンポジウム. 1998. 122-126 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Masaaki Eguchi: "An analogue of the Hardy theorem for the Cartan motion group" Proceedings of the Japan Academy. 74・A・10. 149-151 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi