• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of dimensional and recursive properties for almost periodic solutions of nonlinear partial differential equations

Research Project

Project/Area Number 10640178
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKUMAMOTO UNIVERSITY

Principal Investigator

NAITO Koichiro  Kumamoto Univ., Dept.Eng., Prof., 工学部, 教授 (10164104)

Co-Investigator(Kenkyū-buntansha) TAIZO Sadahiro  Kumamoto Pref.Univ., Dept.Adm., A-Lect., 総合管理学部, 助手 (00280454)
KADOTA Noriya  Kumamoto Univ., Dept.Eng., Lect., 工学部, 講師 (80185884)
OSHIMA Yoichi  Kumamoto Univ., Dept.Eng., Prof., 工学部, 教授 (20040404)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 1998: ¥1,500,000 (Direct Cost: ¥1,500,000)
Keywordsnonlinear evolution equation / almost periodicity / quasi-periodicity / fractal dimension / correlation dimension / tiling / Diophantine approximation / self-similarity / 概同期性 / 準同期性 / 相姦次元
Research Abstract

In recent years great efforts have been made to analyze complexity or chaotic behaviors in the study of dynamical systems. In this research we investigate fractal dimensions and recursive properties of orbits for quasi-periodic dynamical systems and then, we apply the abstract results to almost or quasi-periodic solutions for nonlinear partial differential equations. In [1] (of 11.REF.) we estimate correlation dimensions of discrete quasi-periodic orbits by using the parameters derived from some algebraic properties of the irrational frequencies. On the other hand, in [2], we study recursive properties of the quasi-periodic orbits by defining recurrent dimensions and show inequality relations between the correlation dimensions and the recurrent dimensions. To estimate these dimensions we introduce new class of irrational numbers, quasi Roth numbers, quasi or weak Liouville numbers, which are classified according to badly approximable properties or (extremely) good properties for the rational approximations, respectively.
Furthermore, in [2] and [3] we investigate quasi-periodic solutions of nonlinear partial differential equations with quasi periodic perturbations and estimate these dimensions of the attractors.
Fractal dimensions are most essential in the sense that they show the level of complexity, or selfsimilarity or randomness. On the other hand, it is well known that periodic or almost periodic states occupy the important positions as main gateways in various routes to chaos. In the following papers (of 11.REF.) by the head and co-investigators we have shown various fundamental results, which will play important and essential roles for investigating chaotic behaviors of nonlinear dynamical models.

Report

(4 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (46 results)

All Other

All Publications (46 results)

  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by quasi Roth numbers"J.Korean Math.Soc.. 37. 857-870 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Fractal dimensions and epsilon syncronicity of multidimensional quasi periodic systems"Dynam.Conti.Discr.Impuls.Systems. 7. 223-238 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Recurrent Dimensions of Quasi-Periodic Orbits with Irrational Frequencies given by Quasi Liouville Numbers"Proceedings of The 3^<rd> World Congress of Nonlinear Analysts 2000. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by Roth numbers"Differential equations and applications (Chinju, 1998), Nova Sci. Publ.. 119-129 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Oshima: "Certain ratio limit theorem for time inhomogeneous Markov chains"Stochastic Processes, Physics and Geometry. 96-109 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Y.Oshima: "On the exceptionality of some semipolar sets of time inhomogeneous Markov processes,"Tohoku Math.Journal. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Taizo Sadahiro: "Coloring solitaire tilings"Yokohama Mathematical Journal. 48(to appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Taizo Sadahiro: "Dimension estimate for a set obtained from a three-dimensional non-periodic self-affine tiling"Scientae Mathematicae Japonicae. 4(to appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 貞広泰造: "非周期的自己アフィンタイル貼りにおけるタイルの境界集合の構成と彩色"情報処理学会論文誌. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Akiyama,T.Sadahiro: "Self-similar tiling generated by the minimal Pisot number"Acta.Math.Inform. Univ.Ostravienstis. 6. 9-26 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 田中一之,角田法也 他: "数学の基礎をめぐる論争"シュプリンガー フェアラーク 東京. 213 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by quasi Roth numbers"J.Korean Math.Soc.. 37. 857-870 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Recurrent dimensions of quasi-periodic orbits with Irrational Frequencies given by quasi Liouville numbers"Proc.WCNA. (to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Fractal dimensions and ε-syncronicity of multidimensional quasi periodic systems"Dynam.Conti.Discr.Impuls.Sys.. 7. 223-238 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Recurrent dimensions of quasi-periodic orbits with frequencies given by weak Liouville numbers"Kokyu-roku R.I.M.S.Kyoto Univ.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by Roth numbers"Diff.Eq.Appl.. 111-129 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic trajectories for evolution equations"Kokyu-roku R.I.M.S.Kyoto Univ.. 1136. 96-109 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Lower estimates of dimensions for quasi-periodic orbits"Kokyu-roku R.I.M.S.Kyoto Univ.. 1031. 110-125 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yoichi Oshima: "On the exceptionality of some semipolar sets of time inhomogeneous Markov processes"Tohoku Math.Journal. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Yoichi Oshima: "Certain ratio limit theorem for time inhomogeneous"Stoch.Processes, Phy.Geom.. 29. 533-538 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Taizo Sadahiro: "Coloring solitaire tilings"Yokohama Math.J.. 48 (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Taizo Sadahiro: "Dimension estimate for a set obtained from a three-dimensional non-periodic self-affine tiling"Sci.Math.Japon.. vol.4 (to appear). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Sadahiro, K.Sakurai: "Construction and coloring of boundaries for non-periodic self-affine tilings"Joho Shori Gakkai Ronbunshi. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Taizo Sadahiro: "Some computational results on dual Pisot tiling"Proc.Int.Conf.Discr.Dyn.Finite Automata, Combinatorics Urumqi. 15 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Taizo Sadahiro: "Periodic colorings of aperiodic self-similar tilings"Proc.Jap.Conf.Discr.Comp.Geom.'99. 38-39

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] T.Sadahiro, S.Akiyama: "Self-similar tiling generated by the minimal Pisot number"Acta.Math.Inform.Univ.Ostravienstis. 6. 9-26 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by quasi Roth numbers"J.Korean Math.Soc.. 37. 857-870 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Koichiro Naito: "Fractal dimensions and epsilon syncronicity of multidimensional quasi periodic systems"Dynam.Conti.Discr.Impuls.Systems. 7. 223-238 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Koichiro Naito: "Recurrent Dimensions of Quasi-Periodic Orbits with Irrational Frequencies given by Quasi Liouville Numbers"Proceedings of The 3^<rd> World Congress of Nonlinear Analysts 2000 (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by Roth numbers"Differential equantions and applications (Chinju, 1998), Nova Sci.Publ.. 119-129 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Oshima: "Certain ratio limit theorem for time inhomogeneous Markov chains"Stochastic Processes, Physics and Geometry. 96-109 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Oshima: "On the exceptionality of some semipolar sets of time inhomogeneous Markov processes,"Tohoku Math.Journal. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] Taizo Sadahiro: "Coloring solitaire tilings"Yokohama Mathematical Journal. 48(to appear). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Taizo Sadahiro: "Dimension estimate for a set obtained from a three-dimensional non-periodic self-affine tiling"Scientae Mathematicae Japonicae. 4(to appear). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 貞広泰造: "非周期的自己アフィンタイル貼りにおけるタイルの境界集合の構成と彩色"情報処理学会論文誌. (掲載予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] Yoichi Oshima: "Certain ratio limit theorem for time inhomogeneous Markov chains"The Proceedings Series of Canadian Mathematical Society. (to appear). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Koichiro Naito: "Fractal Dimensions and e-Syncronicity of Multidimensional Quasi Periodic Systems"Dynamics of Continuous,Discrete and Impulsive Systems. Vol.7,No.2. (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with frequencies given by quasi Roth numbers"J.Korean Math.Soc.. (to appear). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Taizo Sadahiro: "Some computational results on dual Pisot tilings"Proceedings of the international conference on discrete dynamics,finite automata and combinatorics. (to appear). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Taizo Sadahiro: "Periodic colorings of aperiodic self-similar tilings"Proceedings of the Japan conference on Discrete and Computational Geometry. (to appear). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Koichiro Naito: "Correlation dimensions of quasi-periodic orbits with Raequences given by Roth numbers" Proc. International Conf. On Math. Analy. Appl.1-B. 313-331 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Koichiro Naito: "Fractal dimensions and ε-syncronicity of multidimensional quasi periodic systems" to oppear in Discr. Conti. Dynam. Sys.(1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Koichiro Naito: "Lower estimates of dimensions for quasi-periodic onbits" 京都大学数理解析研究所講究録. 1031. 110-125 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 内藤幸一郎: "Roth numberを振動数にもつ準同期軌道の相関次元" 日本数学会秋季総合分科会(実函数論). (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] S.Akiyama, T.Sadahiro: "Self-similar tiling generated by the minimol Pisot number" Acta Math. Inform. Univ. Ostravienstis. 6. 9-26 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 田中一之 角田法也 他: "数学の基礎をめぐる論争" シュプリンガー・フェアラーク東京, 213 (1999)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi