• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Extension of almost periodic functions and the distribution of zeros

Research Project

Project/Area Number 10640180
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionWaseda University

Principal Investigator

TANAKA Junichi  Waseda University, School of Education, Professor, 教育学部, 教授 (60124864)

Project Period (FY) 1998 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 2001: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2000: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥500,000 (Direct Cost: ¥500,000)
KeywordsDirichlet series / Alomost periodic functions / Riemann ζ-function / Hardy spaces / Distribution of zeros / Mean-value theorems / Riemaunゼータ関数 / 単一生成元問題 / 零点密度理論 / Riemannのζ関数 / Bohr群 / エルゴード理論
Research Abstract

Using the ergodic theory and the theory of function algebras, we investigate the property of Dirichlet series by regarding as analytic functions on Bohr group. In connection with analytic number theory, we especially restrict our attention to the case of the Riemann ζ-function and obtain a mean-value theorem in a weak sense and some results on value distribution of ζ-function.
Let K be the dual group of the discrete group {log γ ; γ positive rational}. Then a one-parameter group {T_t}_<t∈R> of homeomorphisms of K is defined naturally. Fix 1/2 < u and put
Z_u(x) = Σ^^∞___<n=1>(1)/(n^u)x_<log n>^(x), x∈K,
where x_<log n> denotes the character by log n. Then t → Z_u(T_tO) represents ζ(u+it), and Z_u(x) is an outer function of H^2(K). Since (K, {T_t}_<t∈R>) is an ergodic flow, we have the following mean-value theorem of the Riemann ζ-function : Theorem Let 0 < k < ∞, and let l > 0. Then there is a subset J of Z^+ of density zero such that
<lim>___<J【∋!/】N→∞>(1)/(Nl)Σ^^^<N-1>___<n=0>∫^^^<(n+1)l>___<nl>|ζ(u+it)|^<2k>dt=∫_K|Z_u(x)|^<2k>dσ(x). This theorem shows that Lindelof hypothesis holds in a weak sense. We also study the class of all Dirichlet series t → Z_u(T_t x) with Euler products. This enables us to understand the peculiarity of the Riemann ζ-function.

Report

(5 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] J.Tanaka: "The Riemann Zeta-function and ergodic Haedy spaces"(近刊).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J.Tanaka: "Extension of almost periodic functions and analyticity on flows"Amer.Math.Soc.Trans.(2). 204. 63-80 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Helson, J.Tanaka: "Singular cocycles and the generator problem"Proceeding of Operator Theory Conference. 17. 173-186 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 田中純一: "概周期関数の拡張と流れの上の解析性"岩波「数学」論説. 51. 113-128 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J. Tanaka: "The Riemann Zeta-function and ergodic Hardy spaces"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J. Tanaka: "Extension of almost periodic functions and analyticity on flows"Amer. Math. Soc. Transl. (2), 204. 63-80 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H. Helson and J. Tanaka: "Singular cocycles and the generator problem"Proceeding of Operator Theory Conference, Theta. 173-186 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] J.Tanaka: "Extension of almost periodic functions and analyticity an flows"Amer. Math. Soc. Transl.. 204. 63-80 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Helson,J.Tanaka: "Singular cocycles and the generator problem."Operator Theoretical Methods. 173-186 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Tanaka: "Extension of almost periodic functions and analyticity"Amer.Math.Soc.Transl.Sugaku.. (近刊). (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Helson and J.Tanaka: "Singular cocycles and the generator problem."Proc.Internat.Conference on Operator Theory. (近刊). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] 田中,純一: "概周期関数の拡張と流れの上の解析性"岩波書店「数学」論説. 51・2. 1-15 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Tanaka: "Extension of almost periodic functions and aualyticity on flows."Sugaku Expositions of Amer.Math.Soc.. (近刊). (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Helson and J.Tanaka: "Singular corycles and the generator problem." Rroc.Internat.Conference on Operator Theory. 近刊.

    • Related Report
      1998 Annual Research Report
  • [Publications] 田中純一: "概周期関数の拡張と流れの上の解析性" 岩波「数学」編説. 51・2. 1-15 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] J.Tanaka: "Extension of alucost periodic functions and analyticity on flows" Sugaku(A.M.S.). (近刊).

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi