• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Various quasiconformal extensions of a quasisymmetric automorphism of the unit circle and Teichmuller space

Research Project

Project/Area Number 10640181
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka City University

Principal Investigator

SAKAN Kenichi  Osaka City University, Faculty of Science, Associate Professor, 理学部, 助教授 (70110856)

Co-Investigator(Kenkyū-buntansha) KOMORI Yohei  Osaka City University, Faculty of Science, Assistant, 理学部, 助手 (70264794)
NISHIO Masaharu  Osaka City University, Faculty of Science, Associate Professor, 理学部, 助教授 (90228156)
IMAYOSHI Masaharu  Osaka City University, Faculty of Science, Professor, 理学部, 教授 (30091656)
NAKANISHI Toshihiro  Nagoya University, Graduate School of Polymathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (50701546)
SUGAWA Toshiyuki  Kyoto University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (30235858)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 1999: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 1998: ¥1,500,000 (Direct Cost: ¥1,500,000)
Keywordsquasisymmetric automorphism / quasiconformal extension / harmonic extension / extremal extension / Beurling-Ahlfors extension / Douady-Earle extension / generalized quasisymmetric dilatation / Teichmuller space / 擬等角写像 / ブーリン・アールフォルス拡張 / ドゥアディ・アール拡張
Research Abstract

1. The head investigator Sakan obtained jointly with Partyka and Zajac the following results in three published paper.
(1) They gave necessary and sufficient conditions on sense-preserving homeomorphisms of the unit circle for the quasiconformality of their harmonic extensions. In particular, the case where the harmonic extension is not quasiconformal was studied. In consequence, suitable examples were constructed.
(2) Suppose that the harmonic extension of a sense-preserving homeomorphism of the unit circle is quasiconformal. All such homeomorphisms with a bounded derivative were well characterized. In consequence, a generalization of Martio's result was obtained.
(3) By the use of the extension operators, a unified summary on harmonic and quasiconformal extensions was given.
2. Sakan and an investigator Sugawa attended the 12th Conference on Analytic Functions (August30〜September 5, 1998 at Lublin, Poland) and gave lectures. The papers of the results were published. Sakan expressed the Beurling-Ahlfors condition on quasisymmetry in terms of harmonic measure and cross ration. In consequence, Sakan introduced a generalized conformally invariant dilatation on quasisymmetry and discussed its properties. By an application of holomorphic families of univalent functions, Sugawa obtained some results on quasiconformal extendability of univalent functions.
3. Sakan attended the Second ISAAC Conference (August 16〜21, 1999 at Fukuoka Institute of Technology) and Korea-Japan Seminar on Complex Analysis (October 18〜20, 1999 at Yeungnam University, Korea) and gave lectures. The result will soon appear in the Proceedings. On the space of all quasisymmetric automorphisms of a given Jordan curve, a conformally invariant pseudo-metric which is equivalent to the Teichmuller pseudo-metric was introduced with no use of quasiconformal extensions.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] K. Sakan and D. Partyka: "Quasiconformality of harmonic extensions"J. Comp. Appl. Math.. 105. 425-436 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Sakan, D. partyka and J. Zajac: "The harmonic and quasiconformal extension prerators"Banach Center Publications. 48. 141-177 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Sakan and D. Partyka: "A conformally invariant dilatation of quasisymmetry"Ann. Univ. mariae Curie-Sklodowska. Sect. A53. 167-181 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Sakan and D. partyka: "A pseud-metricon the space of generalized quasisymmetric automorphisms of a Jordan curve"to appear in Proceedings of the Second ISAAC Congress (from August 16 to 21, Fukuoka Inst, of Technology, 1999).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Sugawa: "Holomorphc motinos and quasiconformal extensions"Ann. Univ. Mariae Curie-Sklodowska. Sect. A53. 239-252 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Nakanishi and M. Naatanen: "Parametrization of Teichmuller space by length parameters"Andlysis and Topology(C.A.Cazacuet al. eds.)World Scientific. 541-560 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Sakan and D.Partyka: "Quasiconformality of Harmonic extensions"J.Comp.Appl.Math. 195. 425-436 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Sakan, D.Partyka and J.Zajac: "The harmonic and quasiconformal extension operators"Banach Center Publications. 48. 141-177 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Sakan and D.Partyka: "A conformally invariant dilatation of quasisymmetry"Ann.Univ.Mariae Curie-Sklodowska, Sect. A53. 167-181 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Sakan and D.Partyka: "A pseudo-metric on the space of generalized quasisymmetric automorphisms of a Jordan curve"Proceedings of the Second ISAAC Congress (from August 16 to 21, Fukuoka Institute of Technology, 1999). to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Sugawa: "Holomorphic motions and quasiconformal extensions"Ann.Univ.Maiae Curie-Sklodowska, Sect. A53. 239-252 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T.Nakanishi and M.Naatanen: "Parametrization of Teichmuller space by length parameters"In Analysis and Topology, (edited by C.A.Cazacu, O.Lehto and Th.M.Rassias) World Scientific Publishing Company, Singapore. 541-560 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Sakan and D. Partyka: "Quasiconformality of harmonic extensions"J. Comp. Appl. Math.. 105. 425-436 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Sakan, D.Partyka and J. Zajac: "the harmonic and quasiconformal extension operators"Banach Center Publications. 48. 141-177 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Sakan and D.Partyka: "A conformally invariant dilatation of quasisymmetry"Ann. Univ. Mariae Curie-Sklodowska. Sect. A 53. 167-181 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K. Sakan and D. Partyka: "A pseudo-metric on the space of generalized quasisymmetric automorphisms of a Jordan curve"to appear in Proceedings of the Second ISAAC Congress (from August 16 to 21, Fukuoka Inst. of Technology, 1999).

    • Related Report
      1999 Annual Research Report
  • [Publications] T. Sugawa: "Holomorphic motions and quasiconformal extensions"Ann. Univ. Mariae Curie-Sklodowska. Sect. A 53. 239-252 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Nakanishi and M.Naatanen: "Parametrization of Teichmuller space by length parameters"Analysis and Topology (C.A.Cazacu et al. eds.) World Scientific. 541-560 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] D.Partyka,K.Sakan: "A note on non-quasiconformal harmonic extensions" Bull.Soc.Sci.Letters todz;Serie:Recherches sur les deformations 23. 47. 51-63 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] D.Partyka,K.Sakan: "Quasiconformality of harmonic extensions" J.Comp.Appl.Math.発表予定.

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.Imayoshi: "A remark on the Poincare and Bergman metrics,harmonic and holomorphic maps on a Riemann surface" Institute of Mathematics,Peking University. 117-122 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Nishio,K.Shimomura and N.Suzuki: "A mean value property of poly-temperatures on a strip domain" J.London Math.Soc.発表予定.

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.Komori: "Semialgebraic description of Teichmuller space" Res.Inst.Math.Soc.Kyoto Univ.33. 527-551 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] M.Naatanen,T.Nakanishi: "Parametrization of Teichmuller space by length parameters" Analysis and Topology(C.A.Cazacu et al.eds.)World Scientific. 541-560 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi