• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Numerical Amalysis and Glolal Behavioz of Chemotactic Equations

Research Project

Project/Area Number 10640205
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionOsaka University

Principal Investigator

YAGI Atsushi  Grcaduate School of Engineering, Osaka University. Professor, 大学院・工学研究科, 教授 (70116119)

Co-Investigator(Kenkyū-buntansha) NAKAGUCHI Etsushi  Grcaduate School of Engineering, Osaka University. Assistant, 大学院・工学研究科, 助手 (70304011)
YAMAMOTO Yoshitaka  Grcaduate School of Engineering, Osaka University. Lectunen, 大学院・工学研究科, 講師 (30259915)
OHNAKA Kohzabuww  Grcaduate School of Engineering, Osaka University. Professor, 大学院・工学研究科, 助教授 (60127199)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1999: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 1998: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsChemotactic Equations / Non Lineur Diffusion / Numerical Calculation / Finite Element Methocl / Runge-Kutta Methocl / Stalility / Convergence / 走化性方程式 / 安定性
Research Abstract

In 1998 we devised a discretization scheme for the chemotactic equations which is based on the finite element methods and the Runge-Kutta methods, and proved theoretically stability of the scheme and convergence of the approximate solution. In the proof, notions of the discrete semigroup and discrete evolution operator were newly introduced to describe the approximate solutions precisely.
In 1999 we set up algorithm for calculations by the scheme devised. If one uses usual algorithm for some finite element method, enormous memories of machine are needed. So in this research we made some device that we exchange components of the matrix in a suitable way in order to condense a size of the band of the matrix. By this the spatial variable can be divided into 8192 in the one dimensional case, and into 256 in the two dimensional case. Using this algorithm we performed numerical calculations for the chemotactic equations. As the results, the following two things were clarified mainly on the global behavior of solutions. With the forms of the sensitive function included in the equations the pattern of cellular mold obtained from the solution changes substantially. For the chemotactic equations having the growing term the desired types of patterns of mold, that is concentric circles and ramifications, are really observed in the solutions of the equations.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (29 results)

All Other

All Publications (29 results)

  • [Publications] Y. Nagabuchi: "A tub section model of chemotaxis"Advances Math. Sci. appl.. 8・1. 387-398 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E. Nakaguchi: "Error estimates of implicit Runge-Kutta methods for quasilinear abstract equations of parabolic type in Banach spaces"Japanese J. Math.. 25・1. 181-266 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E. Nakaguchi: "Fill discrete approximation for abstract quasilinear parabolic equations"Math. Japonica. 50・1. 25-34 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Yamatani: "A reliable estimation method of a dipole for-three-dim-ensional Poisson equation"J. Comput. Appl. Math.. 95・1&2. 131-151 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohe: "On an inverse source problem of the Poisson equation using restricted boundary data"Proc. Workshop on Modelling and Simulation of Nonlinear Engineering Systems. 299-302 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Kasai: "A duality and an analytic profile of topological entropy in percolation expressions of 2D potts spin systems"J. Phys. Soc. Japan. 68・10. 3307-3314 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Yamamoto: "Solutions in Basov spaces of a class of abstract parabolic equations of higher order in time"J. Math, Kyoto Univ.. 38・2. 201-227 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Yamamoto: "On coerciveness in Basov spaces for abstract parabolic equations of higher order"Studia Math.. 134・1. 79-98 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Faoini and A. Yagi: "Degenerate Evolution Equations in Banach Spaces"Marcel - Dekker. 313 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Yamamoto (分担): "Advances in Nonlinear Partial Differential Equations and Stachastic"World Scientific. 27(133-159) (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Nagabuchi: "A two sector model of chemotaxis."Advances Math. Sci. Appl.. 8(1). 387-398 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E. Nakaguchi: "Error estimates of implicit Runge-Kutta methods for quasilinear abstract equations of parabolic type in Banach spaces."Japanese J. Math.. 25(1). 181-226 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E. Nakaguchi: "Full discrete approximation for abstract quasilinear para-bolic equations."Math. Japonica. 50(1). 25-34 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Yamatani: "A reliable estimation method of a dipole for three-dimensional Poisson equation."J.Comput. Appl. Math.. 95(1&2). 139-151 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] T. Ohe: "On an inverse source problem of the Poisson equation using restricted boundary data."Proc. Workshop on Modelling and Simulation of Non-linear Engi-neering Systems, Bratislava. 299-302 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Kasai: "A duality and an analytic profile of topological entropy in percolation expressions of 2D potts spin systems."J. Phys. Soc. Japan. 68(10). 3307-3314 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Yamamoto: "Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time."J. Math. Kyoto Univ.. 38(2). 201-227 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Yamamoto: "On coerciveness in Besov spaces for abstract parabolic equations of higher order."Studia Math.. 134(1). 79-98 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] A. Favini and A. Yagi: "Degenerate Evolution Equations in Banach Spaces."Marcel-Dekker. 313 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Yamamoto (contribution): "Advances in Nonlinear Partial Differential Equations and Stochastic, Series on Advances in Math. Appli. Sci. Vol. 48."World Scientific. 133-159 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] E.Nakaguchi: "Full discrete approximation for quasilinear equations"Mathematica Japonica. 50・1. 25-34 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] E.Nakaguchi: "Error estimates of implicit Runge-Kutta methods for equations"Japanese Journal Mathematics. 25・1. 181-226 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 小谷克: "2次元 Poisson 方程式に対する複素双極子の直接的推定法"情報処理学会論文誌. (発表予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Yamamoto: "On coerciveness in Besov spaces for parabolic equations"Studia Mathematics. 134・1. 79-98 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Nakaguchi and Yagi: "Error estimates of implicit Runge-Kutta methods for parabolic equation" Japanese Journal of Mathematics. 25・1. (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Nakaguchi and Yagi: "Full discrete approximation for quasilinear parabolic equations" Mathematica Japonica. 49・3. 1-10 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Yamatani and Ohnaka: "A reliable estimation method of a dipole for three-dimensional Poisson equations" Journal of Computational and Applied Mathematics. 95. 139-151 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Yamamoto: "Solutions in Besow spaces of a class of abstract parabolic equations of higher order in time" Journal of Mathematics of Kyoto University. 38・2. 201-227 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Favini and Yagi: "Degenerate Differential Equations in Banach Spaces" Marcel Dekker, 313 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi