Project/Area Number |
10640212
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Global analysis
|
Research Institution | Hokkaido Tokai University |
Principal Investigator |
CHEN Yun-Gang Hokkaido Tokai University, Resaerch Institute for Higher Education Programs, Prof., 教育開発研究センター, 教授 (50217262)
|
Co-Investigator(Kenkyū-buntansha) |
NAKAMURA Masaaki Nihon University, General Education, Prof., 理工学部, 教授 (00017419)
GIGA Yoshikazu Hokkaido University Graduate School of Sciences, Prof., 大学院・理学研究科, 教授 (70144110)
SHIMADA Hideo Hokkaido Tokai University, Resaerch Institute for Higher Education Programs, Prof., 教育開発研究センター, 教授 (60042008)
|
Project Period (FY) |
1998 – 2001
|
Project Status |
Completed (Fiscal Year 2001)
|
Budget Amount *help |
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2001: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1998: ¥1,200,000 (Direct Cost: ¥1,200,000)
|
Keywords | Motion of surfaces / level set method / Crystalline energy / Finsler spaces / Finsler metrics / Beil metrics / Eguchi-Oki-Malsurnura equation / numerical analysis / 界面運動方程式 / リスタライン・アルゴリズム / 非局所的曲率 / 曲線のピンチ / ベイル計量 / フィンスラー幾何 / Eguchi-Oki-Matsumura方程式 / Finsler spaces / (α,β)-metric / Finsler metrics / constant positive curvature / steady solution / Nonexistence / Kuramoto-Sivashinsky equation / 界面の運動 / 閉曲面の運動 / 運動するグラフ / 特異な重み付き曲率 / 表面拡散 / 広義ラグランジュ計量 |
Research Abstract |
(1) On Finsler geometry, the representation for characterization of surfaces is discussed. Beil metric and (α, β)-metric are concerned. (2) Form the viewpoint of level set method, partial differential equations of first order which may has a solution for a discontinuous initial value are considered. Here, we discussed the Maximum solution and the minimum solution with detailed information. The 3-dimenssional crystalline energy is used to contract The concept of a solution of the equations describing a surface motion. (3) The Eguchi-Oki-Matsumura equation and Kuramoto-Sivashinsky equation are discussed with a development of the numerical analysis methods. The existence of a nontrivial solution is proved by using an energy function, for the steady state equation.
|