• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of chaotic dynamical systems by means of the Conley index theory

Research Project

Project/Area Number 10640220
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionRyukoku University

Principal Investigator

OKA Hiroe  龍谷大学, 理工学部・数理情報学科, 教授 (20215221)

Project Period (FY) 1998 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2001: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2000: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1999: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 1998: ¥800,000 (Direct Cost: ¥800,000)
Keywordsdynamical system / Conley index / singular perturbed vector field / chaos / homoclinic orbit / periodic orbit / transition matrix / global structure / 臨界点 / 重みつき有向グラフ / Transition matrix / ホモクリニック軌道 / 大域的 / 位相的 / 特異摂動 / 分岐 / カオス的 / 退化した分岐 / ヘテロクリニック軌道 / slow-fast system / 位相的エントロピー / bimodal map
Research Abstract

The purpose of this research project was to develop the theory describing the topological structure of the dynamical systems. This was done by extending the Conley index theory, which was originally formulated for gradient-like systems, to a broader class of dynamical systems especially the ones exhibiting chaos, a recurrent and complex behavior in their dynamics. The main results of this project are summarized in the following three items:
1. Development of the Conley index theory adapted for singularly perturbed vector fields, and its application to the analysis of some chaotic dynamical systems: In case that the singularly perturbed vector filed has a one-dimensional slow manifold, its phase space structure can be decomposed into the form of the tube-box-cap collection, which enables us to obtain the Conley index information of the entire phase space structure from the analysis of the individual peices of the decomposition. As a result, one can obtain the properties of the characteri … More stic orbits, such as periodic and connecting orbits. As an application, the theory was tested by analyzing the model differential equation of a irregular oscillatory behavior of a shallow water wave, and concluded that the behavior is chaotic.
2. Extension of the transition matrix theory for multi-parameter systems: The notion of transition matrix is re-considered, which resulted in a new axiomatic formulation, namely, the transition matrix is a chain map on the chain complex obtained from the homology Conley indices given by the Morse decomposition. This new formulation can be used to naturally extend the notion of transition matrix for multi-parameter families of dynamical systems.
3. Other related results: For a piecewise linear one dimensional maps, we studied topoplogical entropy which can be a kind of measurement of the complexity of the dynamical systems. Related to this argument, a study of rigorous proof for the existence of chaotic attracter with computer aid is now in progress. Less

Report

(5 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • 1998 Annual Research Report
  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] H.Kokubu, K.Mischaikow, H.Oka: "Directional transition matrix""Conley Index Theory", Banach Center Publication, (Eds.K.Mischaikow, M.Mrozek, P.Zgliczynski). Vol.47. 133-144 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 国府寛司, 岡宏枝: "余次元2以上のconnectionに対するtransition matrix"数理解析研究所講究録. 1118. 84-95 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Gedeon, H.Kokubu, K.Mischaikow, H.Oka, J.Reineck: "Conley index for fast-slow systems I : One-dimensional slow variable"Journal of Dynamics and Differential Equations. 11. 427-470 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Gedeon, H.Kokubu, K.Mischaikow, H.Oka: "Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing"Journal of Dynamics and Differential Equations. 14. 63-84 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] S.Nakamura, H.Oka: "Monotonicity of topological entropy for symmetric PL bimodal maps"in preparation.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Kokubu, Konstantin Mischaikow, and Hiroe Oka: "Directional transition matrix"in "Conley Index Theory" (Eds. K. Mischaikow, M. Mrozeic, P. Zgliczynski), Banach Center Publication, Vol. 47, 1999, Warsaw, Poland. Vol. 47. 133-144 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Kokubu, Hiroe Oka: "Transition matrices for connections of codimension more than one"RIMS Kokyu-roku. 1118. 84-95 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tomas Gedeon, Hiroshi Kokubu, Konstantin Mischaikow, Hiroe Oka, and James Reineck: "Conley index for fast-slow systems I: One-dimensional slow variable"Journal of Dynamics and Differential Equations. 11. 427-470 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tomas Gedeon, Hiroshi Kokubu, Konstantin Mischaikow, and Hiroe Oka: "Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing"Journal of Dynamics and Differential Equations. 14. 63-84 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Satomi Nakamura, Hiroe Oka: "Monotonicity of topological entropy for symmetric PL bimodal maps"(in preparation).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Gedeon, H.Kokubu, K.Mischnikow, H.Oka: "Chaotic solution in slowly varying perturbationy of Hamiltonian systems with application to shallow water"Journal of Dynamics and Diflerential Eg.. 14. 63-84 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Gedeon,H.Kokubu,K.Mischaikow,& H.Oka: "Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing"Journal of Dynamics and Differential Equations. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Gedeon,H.Kokubu,K.Mischaikow,J.Reineck& H.Oka: "Conley index for fast-slow systems I : One-dimensional slow variable"Journal of Dynamics and Differential Equations. 11. 427-470 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Kokubu,K.Mischaikow,& H.Oka: "Directional transition matrix""Conley Index Theory", Banach Center Publication. 47. 133-144 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] 国府寛司,岡宏枝: "余次元2以上のconnectionに対するtransition matrix"「力学系の特異現象とその数理」数理解析研究所講究録. 1118. 84-95 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] H.Kokubu,K.Mischaikow,H.Oka: "Directional transition matrix in "Conley Index Theory""Banach Center Publication, Warsaw Poland,. Vol.47. 133-144 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Gedeon,H.Kokubu,K.Mischaikow,H.Oka,J.Reineck,: "Conley index for fast-slow systems I : One-dimensional slow variable"Journal of Dynamics and Differential Equations. Vol.11. 427-470 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 国府寛司,岡宏枝: "transition matrixと余次元2以上のconnectionに対する一般化"力学系の特異現象とその数理(代表者宇敷重広)数理解析研究所講究録. 1118. 84-95 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Gedeon, H.Kokubu, K.Mischaikow, H.Oka, J.Reinerk,: "Conley index for fast-slow systems 1 Ore-dimensional slow variable" Joural of Dynamics and Diflerential Eqnutions. (to appear).

    • Related Report
      1998 Annual Research Report
  • [Publications] H.Kokubu, K.Mishaikow, H.Oka: "Directional transition matrix" Proceedings of the Conley Index Workshop,Banach center Publication Warsaw,Poland. (to appear).

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2021-11-05  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi