• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Extraction Method of Failure Signal and Automatic Generation Method of Feature Parameters

Research Project

Project/Area Number 10650148
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 設計工学・機械要素・トライボロジー
Research InstitutionKyushu Institute of Technology

Principal Investigator

CHEN Peng  Kyushu Institute of Technology, Faculty of Computer Science and System Engineering, Associate Professor, 情報工学部, 助教授 (50231428)

Co-Investigator(Kenkyū-buntansha) TOYOTA Toshio  Kyushu Institute of Technology, Faculty of Computer Science and System Engineering, Professor, 情報工学部, 教授 (00227662)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsFailure diagnosis / Condition monitoring / Signal processing / Feature parameter / Genetic algorithms / Genetic programming / Neural network / Rough sets / 異常診断 / 異常信号 / 時間領域 / 周波数領域 / 自己再組織化
Research Abstract

Recently, industry world wide has been experiencing profound changes as the result of the development of flexible and intelligent manufacturing system. This tendency towards unmanned plants will to continue to develop in the 21st century. In line with these developments, the role of plant maintenance will also continue to evolve to one of a "guarantor" or high productivity and quality.
In the field of condition monitoring for plant machinery, vibration or sound signal for measured for detection of failures and discrimination of kinds of failure. When the signals for the diagnosis are measured at an early stage of a machine failure or at a distant location from the failure parts, the extraction of failure signal and the early detection of failure are difficult, because the failure signal is strongly contaminated by noise. It is important to cancel the noise from the sound signal as cleanly as possible in order to increase the sensitivity of failure detection. For noise canceling, many me … More thods have been proposed. For example, band pass filter, adaptive filter, Wiener filter, and Kalman filter etc.. But in the field of machinery diagnosis, these methods can not always be applied to failure signal extraction.
Furthermore. When using a computer for condition monitoring for plant machinery, excellent feature parameters are necessary, by which patterns can be precisely distinguished. Currently there is not an acceptable method for extracting the excellent feature parameter.
For overcoming these difficulties, this study proposes new method as follows.
(1) extraction methods of failure signal
1) Extraction method of the failure signal from thc signal measured in the abnormal state of a machine using genetic algorithms (GA) and statistical information.
2) Extraction method of failure frequency areas from spectrum measured in the abnormal state of a machine by sequential statistical tests.
(2) Automatic Generation Method of Feature Parameters
1) Self-reorganization of feature parameters in time domain by genetic algorithms
2) Self-reorganization of feature parameters in frequency domain by genetic algorithms.
3) Automatic generation method of feature parameters by Wavelet analysis and genetic algorithms for diagnosis of machine in unsteady operating conditions
(3) Intelligent diagnosis method
The "Partially-linearized Neural Network (P.N.N.)" and the knowledge acquisition method by rough sets have been proposed, in order to diagnosing failures of a gear equipment and processing ambiguous diagnosis by neural network.
The efficiencies of all the methods proposed in this study have been verified by applying them to practical failure diagnosis, such as, rolling bearing, gear equipment etc.. Less

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (30 results)

All Other

All Publications (30 results)

  • [Publications] Peng CHEN: "self-reorganization of Symptom Parameters in Frequency Domain for Failure Diagnosis by Genetic Algorithm"Journal of Intelligent & Fuzzy System (IOS Press). 6. 27-37 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 陳鵬: "遺伝的プログラミングによる周波数領域の特徴パラメータの自己再組織化"日本機械学会論文集(C編). 65(633). 212-219 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Peng CHEN: "Automatic Generation Method of Optimum Symptom Parameters for Condition Diagnosis of Plant Machinery by Genetic Algorithms"Proc. of First International Symposium on Environmentally Conscious Design and Inverse Manufacturing. 880-885 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Fang FENG: "SEQUENTIAL EXTRACTION METHOD OF SYMPTOM PARAMETERS IN FREQUENCY DOMA IN FUZZY DIAGNOSIS OF MACHINERY"Proc. of International conference on Advenced Manufacturing Technology '99. 929-934 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 陳鵬: "可変運転条件における機械設備の異常診断,(第1報,遺伝的アルゴリズムとウェーブレット解析による回転機械の異常診断法)"日本機械学会論文集(C編). 65(640). 202-207 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 宋京偉: "逐次ファジィ・ニューラルネットワークを用いた歯車装置の異常診断"日本設備管理学会誌. 10(1). 15-20 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 千場隆之: "ウェーブレット解析と遺伝的アルゴリズム(GA)による異常診断法(1)"北九州医工学術者協会誌. 9(2). 1-4 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jinwei SONG: "Failure Diagnosis for Gear Equipment by Rough Sets and Partially-linearized Neural Network"International Conference on Advenced Mechatronics (ICAM '98). 808-813 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Pen CHEN: "Self-reorganization of Symptom Parameters in Frequency Domain for Failure Diagnosis by Genetic Algorithm"Journal of Intelligent &Fuzzy System (IOS Press). 6. 27-37 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Peng CHEN: "Self-reorganization of Feature Parameters in Frequency Domain by Genetic Programing"Transactions of JSME. 65(633). 212-219 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Peng CHEN: "Automatic Generation Method of Optimum Symptom Parameters for Condition Diagnosis of Plant Machinery by Genetic Algorithms"Proc.of First International Symposium on Environmentally Conscious Design and Inverse Manufacturing. 880-885 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Fang FENG: "SEQUENTIAL EXTRACTION METHOD OF SYMPTOM PARAMETERS IN FREQUENCY DOMAIN FOR FUZZY DIAGNOSIS OF MACHINERY"Proc.of International Conference on Advanced Manufacturing Technology. 929. 934 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Peng CHEN: "Failure Diagnosis of Machinery in Variable Operational Condition (1st Report, Diagnosis is Method for Rotary Machinery by Genetic Programming and Wavelet Analysis)"Transactions of JSME. 65(640). 202-207 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jingwei SONG: "Diagnosis Method for a Gear Equipment by Sequential Fuzzy Neural Network"Journal of the Society of Plant Engineering Japan. 10(1). 15-20 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Jingwei SONG: "Failure Diagnosis for Gear Equipment by Rough sets and Partially-linearized Neural Network"Proc.of International Conference on Advanced Mechatronics (ICAM'98). 808-813 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Takayuki CHIBA: "Diagnosis by Wavelet Analysis and Genetic Algorithms(GA)"THE JOURNAL OF KITAKYUSHU MEDICAL AND ENGINEERING COOPERATIVE ASSOCIATION. 9(2). 1-4 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 陳 鵬: "遺伝的プログラミングによる周波数領域の特徴パラメータの自己再組織化"日本機械学会論文集(C編). 65(633). 212-219 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 陳 鵬: "ラフ集合による診断知識の獲得法及び線形補間型ニューラルネットワークによる故障診断法"日本設備管理学会誌. 9(3). 9-17 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Peng CHEN: "Automatic Generation Method of Optimum Symptom Parameters for Condition Diagnosis of Plant Machinery by Genetic Algorithms"Proc.of First International Symposium on Environm entally Conscious Design and Inverse Manufacturing. 880-885 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Fang FENG: "SEQUENTIAL EXTRACTION METHOD OF SYMPTOM PARAMETERS IN FREQUENCY DOMA IN FOR FUZZY DIAGNOSIS OF MACHINERY"Proc.of International Conference on Advanced Manufacturing Technology'99. 929-934 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 陳 鵬: "可変運動条件における機械設備の異常診断,(第1報,遺伝的アルゴリズムとウェーブレット解析による回転機械の異常診断法)"日本機械学会論文集(C編). 65(640). 202-207 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 宋 京偉: "逐次ファジィ・ニューラルネットワークを用いた歯車装置の異常診断"日本設備管理学会誌. 10(1). 15-20 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] 千場隆之: "ウェーブレット解析と遺伝的アルゴリズム(GA)による異常診断法(1)"北九州医工学術者協会誌. 9(2). 1-4 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Jinwei SONG: "Failure Diagnosis for Gear Equipment by Rough Sets and Partially-Iinearized Neural Network"International Conference on Advanced Mechatronics (ICAM'98). 808-813 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] 陳 鵬,豊田利夫: "逐次ファジィ診断法および軸受異常診断への応用" 日本機械学会論文集(C). 65巻631号. (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] Peng CHEN: "Automatic Generation Method of Optimum Symptom Parameters for Condition Diagnosis of Plant Machinery by Genetic Algorithms" Proceedings of EcoDesign'99. 880-885 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 宋京偉,陳 鵬: "逐次ファジィ・ニューラルネットワークを用いた歯車装置の異常診断法" 日本設備管理学会誌. Vol.10 No.1. 15-20 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 陳 鵬: "遺伝的アルゴリズムによる設備異常の最適識別法" 1998年度精密工学会秋季学術講演論文集. 11 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 千場隆之,陳 鵬: "ウェーブレット解析と遺伝的アルゴリスム(GA)による異常診断法" 北九州医工学術者協会誌. Vol.9 No.2. 1-4 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Peng CHEN: "Self-reorganization of symptom Parameters in frequency domain for-failure diagnosis by genetic algorithms" Jaurnal of Intelligent and Fuzzy Systems. 6. 27-37 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi