A Study on Robust H∞ Control of Visual Servo Systems Design
Project/Area Number |
10650427
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Control engineering
|
Research Institution | Kanazawa University |
Principal Investigator |
FUJITA Masayuki Faculty of Engineering, Kanazawa University Professor, 工学部, 教授 (90181370)
|
Project Period (FY) |
1998 – 1999
|
Project Status |
Completed (Fiscal Year 1999)
|
Budget Amount *help |
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1999: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1998: ¥1,300,000 (Direct Cost: ¥1,300,000)
|
Keywords | Robust Control / HィイD2∞ィエD2 Control / Nonlinear Control / Visual Servo / Robot Control |
Research Abstract |
Motion control of the mechanical systems with visual feedback is a basic ability of human being. Applications that have been proposed widely span manufacturing, car steering and so on. Moreover, the visual feedback control is an important discipline that lies at the intersection between nonlinear control theory and geometric framework of the mechanics and image processing. This research deals with the visual feedback control of robotic manipulators in nonlinear control theoretical aspects. Firstly, the visual feedback control problem of the planar manipulator is considered as the stabilization problem with respect to the image feature position. The passivity of the manipulators and the rotational matrix property derive the visual feedback controller to guarantee the asymptotic stability in the Lyapunov sense. Next, the principal contribution of this research is the design and analysis of the robust visual feedback control in the nonlinear HィイD2∞ィエD2 setting. The HィイD2∞ィエD2 visual feedback control achieves the internal stability and the LィイD22ィエD2 gain disturbance attenuation property against the exogenous inputs, e.g., joint torque disturbances and unknown target motions. For the LィイD22ィエD2 gain performance analysis, the storage function is directly constructed via the properties of the manipulator dynamics and the rotational matrix. Then, the robust visual feedback control against the parametric uncertainties of the manipulator model is proposed. The adaptive HィイD2∞ィエD2 control technique provides the robust visual feedback control algorithm and the storage function for the LィイD22ィエD2 gain performance analysis.
|
Report
(3 results)
Research Products
(24 results)