• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A local likelihood approach to semiparametric inference

Research Project

Project/Area Number 10680323
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Statistical science
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

EGUCHI Shinto  The Institute of Statistical Mathematics, Department of Fundamental Statistical Theory, Professor, 統計基礎研究系, 教授 (10168776)

Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 1999: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 1998: ¥1,800,000 (Direct Cost: ¥1,800,000)
Keywordslocal likelihood / maximum likelihood / density estimation / kernel function / survival analysis
Research Abstract

The idea on localization of likelihood has been developed into statistical inference. This approach aims at combining parametric inference with nonparametric inference. A theoretical discussion on density estimation by mounting a kernel function into the likelihood function has been extensively established. Advantageous points of the local likelihood method over the usual plug-in density estimation and nonparametric density estimation are proven in both theoretical and experimental aspects. This approach is applied to the classification problem by kernel-weighting the classifier. Specifically the logistic regression discrimination is update to the localization version. The method automatically gives flexible nonlinality against the usual discriminant hyperplane. In principle it gives appropriate adjustment on the classifier to sample fluctuation by more weighting the likelihood function about data near the hypersurface and by less weighting that about data depart from the surface. It is observed that this idea on the localized classifier is closely related with the idea on the support vector machine in the field of neural networks. Now the close relation is focussed in order to propose the fusion of theses method.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] Higuchi. I: "The influence function of principal component analysis by self-organizing rule"Natural computation. 10. 1453-1444 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Eguchi, S.: "A class of menthods and near-parametric asymptotics"Jour. Roy. Satist. Soc. B. 60. 709-724 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Amisaki, T.: "A comparison of menthods for estimating individual pharmagokinetic parameters"Jour. Pharmacokinetics and Biopharmaceutics. 27. 103-121 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 江口真透: "Neyman-Peasonの補題から導かれる判別分析"商学数理. 60. 39-46 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 江口真透: "概パラメトリック推測-柔らかなモデルの構築-"統計数理. 47. 29-48 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Higuchi, I. And Eguchi, S.: "The influence function of principal component analysis by self-organizing rule."Neural Computation. 10. 1435-1444 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Eguchi, S. and Copas, J.B.: "a class of local likelihood methods and near-parametric asymptotic."Jour. Roy. Statist. Soc. B. 60. 709-724 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Amisaki, T. and Eguchi, S.: "A comparison of methods for estimating individual pharmagokinetic parameters."Jour. Pharmacokinetics and Biopharmaceutics. 27. 103-121 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Eguchi, S.: "Discriminant analysis derived from Neyman-Pearson lemma."Journal of Commerce, Economics and Economic History. 67. 39-46 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Eguchi, S.: "Near parametric inference - Towards flexible modeling."Proceedings of the Institute of Statistical Mathematics. 47. 29-48 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Higuchi, I.: "The influence function of principal component analysis by self-organizing rule"Neural Computation. 10. 1435-1444 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Eguchi, S.: "A class of local likelihood methods and near-parametric asymptotics"Jour. Roy. Statist. Soc. B. 60. 709-724 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Amisaki, T.: "A comparison of methods for estimating individual pharmagokinetic parameters"Jour. Pharmacokinetics and Biopharmaceutics. 27. 103-121 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 江口真透: "Neyman-Peasonの補題から導かれる判別分析"商学論集. 60. 39-46 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 江口真透: "概パラメトリック推測-柔らかなモデルの構築-"統計数理. 47. 29-48 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Higuchi,I.: "The influence function of principal component analysis by self-organizing rule." Neural Computation. 10. 1435-1444 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Eguchi,S.: "A class of local likelihood methods and near-parametric asymptotics." Jour.Roy.Statist.Soc.B. 60. 709-724 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi