• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Rational Initialization of the Feed-Forward Neural Network Regression.

Research Project

Project/Area Number 10680328
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Statistical science
Research InstitutionNational Center Test for University Admissions

Principal Investigator

MAYEKAWA Shin-ichi  The national Center for University Entrance Examinations. Research Division, Associate Professor, 研究開発部, 助教授 (70190288)

Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1999: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1998: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsneural network regression / initial estimate / variable selection / spline regression / parameter estimation / ロジスティク展開 / Gram-Schumit法
Research Abstract

In this research, a method to derive a rational initial estimate of the parameters of neural network regression model is derived.
Let the first layer of the 3-layer feed-forward neural network regression model be donated as X and the parameter (intercept and weight) matrices from the first layer to the second be θィイD12*ィエD1, WィイD12*ィエD1. Our method first define the values of the parameters so that the second layer output OィイD12*ィエD1 = ψ(1θィイD12*'ィエD1 + XWィイD12+ィエD1) (1) consists of a set of the monotone functions rich enough to cover the criterion space, Y. Then, a variable selection technique will be used to select the best fitting subset of the columns of OィイD12*ィエD1 matrix resulting in the (selected) subset OィイD12ィエD1 and the weight matrix θィイD13ィエD1, WィイD13ィエD1 using the following multivariate linear regression : Y 【approximately equal】 1θィイD13'ィエD1 + OィイD12ィエD1WィイD13ィエD1 (2)

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi