• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Behavior Acquition Based on Stochastic Field Model

Research Project

Project/Area Number 10680408
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 情報システム学(含情報図書館学)
Research InstitutionKyushu Institute of Technology

Principal Investigator

EJIMA Toshiaki  Department of Computer Science, Kyushu Institute of Technology, Professor, 情報工学部, 教授 (00124553)

Co-Investigator(Kenkyū-buntansha) OHASHI Takeshi  Department of Computer Science, Kyushu Institute of Technology, Ass. Professor, 情報工学部, 助手 (00233239)
YOSHIDA Takaichi  Department of Computer Science, Kyushu Institute of Technology, Ass. Professor, 情報工学部, 助教授 (70200996)
Project Period (FY) 1998 – 2000
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 1999: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1998: ¥2,600,000 (Direct Cost: ¥2,600,000)
Keywordsreinforcement / Learning / autonomous robot / behavior Acquition / Synceses / Q-Learning / Q-学習 / 自律型ロボット / 自己組織化
Research Abstract

Reinforcement learning has been used as a method that is useful for an autonomous robot to select an appropriate action in each state with little or no premise knowledge. Typically, even if an autonomous robot has continuous sensor values, sensor space is quantized to reduce learning time. However, the reinforcement learning algorithms including Q-learning suffer from errors due to state space sampling.
To overcome the above, we propose Extended Q-learning (EQ-learning) based on Q-learning creates mapping that maps a continuous sensor space to a descrete action space. Through EQ-learning, action-value function approximation is represented by a summation of weighted base functions, and autonomous robot adjusts only weight of base function by robot learning. In order to obtain a simpler learning model, other parameters are calculated automatically by unification of two similar base functions.

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 榎田修一 他: "行動確率場モデルに基づく強化学習"情報処理学会論文誌(数理モデル化と問題解析). 40SIG9. 72-80 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Enokida etc.: "Stochastic field model for autonomous robot learning"Proc. of IEEE Int. Conf. on SMC. II. 752-757 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Enokida etc.: "Reinforcement Learning Based on Stochastic Field Models"Journal of IPSJ. No. SIG9 40. 72-80 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Enokida etc.: "Stochastic Field Model for autonomous robot learning"Proc.of IEEE Int. Conf. on SMC. II. 752-757 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 榎田修一 他: "行動確率場モデルに基づく強化学習"情報処理学会論文誌. 40.SIG9. 72-80 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Enokida etc.: "Stochastic Field Model for Auta***** robot learning"Proc.of IEEE Int.Conf.on SMC. II. 752-757 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 榎田修一,大橋,吉田,江島: "行動確率場モデルによる行動獲得手法の高性能化" 第16回日本ロボット学会学術講演会予稿集. Vol.1. 405-406 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 福田,大橋,吉田,江島: "自律型ロボットの強化学習によるショート行動の獲得" 第51回電気関連九州支部連合大会講演会予稿集. 92 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi