• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Iwasawa theory of Harse zeta functions

Research Project

Project/Area Number 11440003
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERSITY (2001)
The University of Tokyo (1999-2000)

Principal Investigator

KATO Kazuya  Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90111450)

Co-Investigator(Kenkyū-buntansha) KATURA Toshiyuki  Dept Math. Sci. Univ. of Tokyo Professor, 大学院・数理科学研究科, 教授 (40108444)
SAITO Takeshi  Dept Math. Sci. Univ. of Tokyo Professor, 大学院・数理科学研究科, 教授 (70201506)
YOSHIDA Hiroyuki  Graduate School of Science Professor, 大学院・理学研究科, 教授 (40108973)
ODA Takayuki  Dept Math. Sci. Univ. of Tokyo Professor, 大学院・数理科学研究科, 教授 (10109415)
UENO Kenji  Graduate School of Science Professor, 大学院・理学研究科, 教授 (40011655)
川又 雄二郎  東京大学, 大学院・数理科学研究科, 教授 (90126037)
寺杣 友秀  東京大学, 大学院・数理科学研究科, 助教授 (50192654)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥10,300,000 (Direct Cost: ¥10,300,000)
Fiscal Year 2001: ¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2000: ¥4,100,000 (Direct Cost: ¥4,100,000)
Fiscal Year 1999: ¥3,400,000 (Direct Cost: ¥3,400,000)
KeywordsHarse zeta function / moduler forms / Iwasawa theory / abelian variety / BSD conjecture / conductor / log geometry / Birch Swinnerton-Dyer予想 / Hodge構造 / log代数多様体 / 退化 / 導手公式 / SL(2)-orbit / 代数体 / エタール・コホモロジー / 微分加群 / 対数的アーベル多様体 / コンパクト化 / 極小モデル / ホッジ構造 / リーマン・ヒルベルト対応
Research Abstract

Concerning Iwasawa theory of moduar forms, I completed the preprint "p-adic Hoclge theory and values of zeta funcions of moduar forms" (244 pages). In this paper, I proved the half of Iwasawa main conjecture for modular forms. (Half means one 【less than or equal】 in the conjecture which has the form of the equality "zeta side"="arithmetic group side.)
As an application I obtained results on BSD confectures on elliptic curves over rational number field.
Concerning BSD 'cong' for abelian varieties over global fields of poeetre characteristic, I proved it assuming the fimteness of Take-Shaturevich group (with F. Trihen).
I proved Blocn's conductor formula by the joint work with Takeshi Saito, This is related also to Harse zeta functions.
I obtained results on log Hodge theory and on log abelian varieties by using the method of log geometry.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] Kazuya Kato: "Existence theorem for higher local fields"Geom Topol. Monogr. 3. 165-195 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "Bloch's conductor formula"Proc. Jangjeon Math. Soc. 1. 1. 91-95 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "How Fermat's last theorem was proved"Historia Sci.. 9. 123-145 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "Enler systems, Iwasawa theory, and Selmer groups"Kodai Math. J. 22. 313-372 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato, Sampei Usui: "Logarithmic Hodge Structures and Classifying Spaces"CRM Proc. lecture Notes. 24. 115-130 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato, Sampei Usui: "Borel-Serre spaces and spaces of SL(2)-orbits"Advanced Studies in Pure. Math.. (公表予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "Existence thesrem for higher local fields"Geom Topol. Monogr. 3. 165-195 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "Bloch's conductor formula"Proc. Jamgjeon Math. Soc. 1. 91-95 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "How Fermat's last thesrem was proved"Historia Sci.. 9. 123-145 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "Euler systems, Iwasawa theory and Selmer groups"Kodai Math J.. 22. 313-372 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato, Sampei Usui: "Lugerithmic Hodge structures and classifying opaces"CRM proc. Lecture Notes. 24. 115-130 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato, Sampei Usui: "Borel-Serre spaces and spaces of SL(2)-orbits"Advanced Studies in Pure Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kazuya Kato: "p-adic Hodge theory and values of zeta functions of modular forms"Asterisque. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazuya Kato, Takeshi Saito: "Conductor formula of Bloch"Publ. Math. I.H.E.S.. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazuya Kato, Sampei Usui: "Borel-Serre spaces and spaces of SL(2)-orbits"Advanced Studies in Pure Math. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazuya Kato, Toshiharu Matsubara, Chikara Nakayama: "Log C^∞ functions and degencvation of Hodge structures"Advanced Studies in Pure Math. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazuya Kato: "Existence Theorem for higher local fields"Geom. Toppl. Monogr.. 3. 165-195 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazuya Kato: "Euler Systems, Iwasawa theory, and Selmer groups"Kodai Math.J. 22. 313-372 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kazuya Kato: "Generalized explicit reciprocity law"Advanced Studies in Contemporary math. 1. 57-126 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kazuya Kato: "Log Betti cohomology, log etale cohomology, and log de Rham cohomology of log schemes over C"Kodai Math. J.. 22. 161-186 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kazuya Kato: "Logarithmic Hodge structures and classifying spaces"Proc.Nato Advanced Study Institute. 24. 115-130 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Kazuya Kato: "Euler systems,Iwasawa theory,and Selmer groups"Kodai Math.J. 22. 313-372 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kazuya Kato,Chikara Nakayama: "Log Betti cohomology,log etale cohomology,and log de Rham cohomology of log Schemes over C"Kodai Math.J. 22. 161-186 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kazuya Kato: "Generalized explicit reciprocity law"Advanced Studies in Contemporary Math.. 1. 57-126 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kazuya Kato: "Lectures on the approach to Iwasawa theory for Hasse-Weil L-fumotions via BdR"Lecture Notes in Math.. 1553. 50-163 (1993)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi