• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On zeta functions of prehomogeneous vector spaces

Research Project

Project/Area Number 11440007
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

SAITO Hiroshi  Kyoto Univ, Graduate School of Human and Environmental studies, Prefssor, 大学院・人間・環境学研究科, 教授 (20025464)

Co-Investigator(Kenkyū-buntansha) MATSUKII Toshihiko  Kyoto Univ, Integrated Human Studies, Ass Professor, 総合人間学部, 助教授 (20157283)
NISHIYAMA Kyo  Kyoto Univ, Integrated Human Studies, Ass Professor, 総合人間学部, 助教授 (70183085)
KATO Shinichi  Kyoto Univ, Integrated Human Studies, Professor, 総合人間学部, 教授 (90114438)
MATSUMOTO Makoto  Kyoto Univ, Integrated Human Studies, Ass Professor, 総合人間学部, 助教授 (70231602)
YAMAUCHI Masatoshi  Kyoto Univ, Integrated Human Studies, Professor, 総合人間学部, 教授 (30022651)
立木 秀樹  京都大学, 総合人間学部, 助教授 (10211377)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2001: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2000: ¥2,100,000 (Direct Cost: ¥2,100,000)
Keywordsprehomogeneous vector space / zeta function / explicit formula / Freudenthal quartics / degenerate Whittaker vector / Siegel cusp form / theta correspondence / Shintani function / Freudenthal quartics / unsaturated概均質ベクトル空間 / Kocher-Maass級数 / Yoshida lifting / 写像類群 / 絶対ガロア群 / 概均質ベクトル空間のゼータ関数 / nonsaturated概均質ベクトル空間 / 退化Whittakerベクトル / エンドスコピー / Siegel保型形式 / 半単純リー群 / ベルンシュタイン次数 / 対称空間 / 球関数 / 旗多様体
Research Abstract

The main purpose of this reseach is to study an explicit formula of zeta functions of prehomogeneous vector spaces and its application to automorphic forms. On the zeta functions, we proved their convergence under the rather general assumption that the singular set is a hypersurface and gave an explicit formula for zeta fuctions in terns of local orbital zeta functions under the assumption that the Hasse principle holds for G. As applications of this formula, we calculated the global zeta functions for 4 types of prehomogeneous vector spaces, which have relative invariants of degree 4 called Freudenthal quartics, and determined the relation between the zeta functins of unsaturated prehomegeneous vector spaces and that of the prehomogeneous vector spaces containing that unsaturated prehomogenous vector spaces. By these calculations, we have determined the global zeta functions of 19 types out of 29 types of regular irreducible reduced prehomogeneous vector spaces. These result seem to suggest that the arithmetic nature of global zeta fucntions are determined by the group of the connected components of stabilizer groups of generic points.
We have not made much progress on the application of zeta functions of prehomogeneous vector spaces to auttomorphic forms. But the following results were obtained. Konno proved an twisted analogue of the result by Rodier-Moeglin-Waldspurger on dimensions of degenerate Whittaker vectors and reduced the generic packet conjecture for classical groups to the twisted endoscopy of general linear groups. Ikeda proved a conjecture of Miyawaki for Siegel cusp forms of degree 3 in a generalized form and constructed many Siegel cusp forms. Nishiyama determined the relation of associated varieties in the theata correspondence and showed that in some cases the correspondence of associated cycles can be described clearly. Kato proved the uniqueness of Shintani functions for p-adic groups.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (29 results)

All Other

All Publications (29 results)

  • [Publications] 斎藤 裕: "Global Zeta functions of Frudenthal quartics"(未定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 斎藤 裕: "Convergence of the zeta functions of prehomogeneous vector spaces"(未定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 斎藤 裕: "On zeta functions associated to symmetric matiricesII : Functional equations and special values"(未定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 斎藤 裕: "On "Easy" Zeta Functions"Sugaku Expositions. 14. 191-203 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 斎藤 裕: "Explicit form of the zeta functions of prehomogeneous vector spaces"Math. Ann.. 315. 587-615 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 西山 享: "Multiplicity-free actions and the geometry of nilpotent orpits"Math. Ann.. 318. 777-793 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Saito: "Global Zeta functions of Frudenthal quartics"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Saito: "Convergence of the zeta functions of prehomegeneous vector spaces"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Saito: "On zeta functins associated to symmetric matirices II Functional equations and special values"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Saito: "On "Easy" Zeta Functions"Sugaku Expositions. 14-2. 191-203 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Hiroshi Saito: "Explicit form of the zeta functions of prehomegeneous vector spaces"Math. Ann.. Vol.315. 587-615 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Kyo Nihiyama: "Multiplicity-free actions and the geometry of nilpotent orbits"Math.Ann.. Vol.318. 777-793 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 斎藤 裕: "Global Zeta functions of Frudenthal quatics"未定. (未定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 斎藤 裕: "Convergence of the zeta functions of prehomogeneous vector spaces"未定. (未定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 斎藤 裕: "On Zeta functions associated to symmetric matiricesII : Functional equations and special values"未定. (未定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 斎藤 裕: "On "Easy" Zeta Functions"Sugaku Expositions. 14巻2号. 191-203 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 加藤信一: "Whittaker-Shintani functions for orthogonal groups"未定. (未定).

    • Related Report
      2001 Annual Research Report
  • [Publications] 西山 享: "Theta lifting of holomorphic discrete series, The case of V(p, g)X U(n, n)"Trans. A.M.S.. 353巻. 3327-3345 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 西山享: "Invariants for Representations of Weyl Groups, Two-Sided Cells and Modular Representations of Iwahori-Hecleetlgebras."Adv.Studies in Pure Math.. 28巻. 105-114 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 西山享: "Bernstein degree and associated cycles of Harish-Chandra modules-Hermitian symmetric case-."Asterisque. (未定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 西山享: "Multiplicity-free actions and the geometry of nilpotent orbits."Mathematische Annalen. (未定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 西山享: "Kawanaka invariants for representations of weyl groups."J.Alg. 225巻. 842-871 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 加藤信一: "Whittaker-Shintani functions for orthogonal groups"(未定).

    • Related Report
      2000 Annual Research Report
  • [Publications] 斎藤 裕: "Convergence of zeta functions of prehomogeneous vector spaces"未定. (未定)(未定).

    • Related Report
      1999 Annual Research Report
  • [Publications] 斎藤 裕: "On zeta functions associated to symmetric matrices II: Functional equations and special values"未定. (未定)(未定).

    • Related Report
      1999 Annual Research Report
  • [Publications] 斎藤 裕: "Explicit form of the zeta functions of prehomogeneous vector spaces"Math. Ann. (未定)(未定).

    • Related Report
      1999 Annual Research Report
  • [Publications] 西山 享: "Invariants for representations of weyl Groups and two-sided cells"J. Math. Soc. Japan. 51巻. 1-34 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 西山 享: "Bernstein degree of Singular unitary highest weight representations of metaplectic group"Proc. Japan Acad.. 75巻. 9-11 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 西山 享: "Schur duality for Cartan type Lie algebra Wn"Journal of Lie Theory. 9巻. 234-248 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi