• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global Geometrical Approach to Contact Manifolds

Research Project

Project/Area Number 11440016
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionUNIVERSITY OF TSUKUBA

Principal Investigator

ITOH Mitsuhiro  INSITUTE OF MATHEMATICS, PROFESSOR, 数学系, 教授 (40015912)

Co-Investigator(Kenkyū-buntansha) AKUTAGAWA Reiko (AIYAMA,REIKO)  INSTITUTE OF MATHEMATICS, LECTURER, 数学系, 講師 (20222466)
NAGATOMO Yasuyuki  INSTITUTE OF MATHEMATICS, LECTURER, 数学系, 講師 (10266075)
TASAKI Hiroyuki  INSTITUTE OF MATHEMATICS, ASSOC.PROFESSOR, 数学系, 助教授 (30179684)
MORIYA Katsuhiro  INSITUTE OF MATHEMATICS, ASSISTANT, 数学系, 助手 (50322011)
KAWAMURA Kazuhiro  INSTITUTE OF MATHEMATICS, ASSOC.PROFESSOR, 数学系, 助教授 (40204771)
若林 誠一郎  筑波大学, 数学系, 教授 (10015894)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥5,500,000 (Direct Cost: ¥5,500,000)
Fiscal Year 2000: ¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1999: ¥3,500,000 (Direct Cost: ¥3,500,000)
KeywordsContact manifold / CR twistor space / Almost CR structure / Self-dual Weyl conformal tensor / 佐々木多様体 / 自己双対性 / 調和形式 / 接触カップ積
Research Abstract

In this project we studied the following researches.
1. Study of CR twistor space over a 5-dim contact metric manifold was developed. In analogy of 4-dim manifold it is shown that the CR twistor space admits an almost CR structure and it is verified that this almost CR structure is integrable under the curvature conditions on a given base contact metric 5-manifold, that the anti-self-dual Weyl conformal tensor vanishes and also the scalar curvature s=-4.
2. 4-dimensional geometry can be applied to the contact subbundle of contact metric manifolds. By Tachibana's theorem and also by N.Tanaka's systematic theory on CR geometry harmonic k-forms over a compact Sasakian (2n+1)-manifold take values in the contact subbundle, when k<n+1. So the self-duality in Sasakian contact structure was defined like 4-dim manifold theory. Remark that Sasakian contact structure turns out to be nothing but a normal strongly pseudo convex CR structure, a main subject in CR geometry.
3. Study of Legendrian surfaces minimally immersed in a Sasakian contact 5-manifold was proceeded in terms of Hopf differential, the cubic differential and also in terms of the second variation.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Mitsuhiro Itoh: "Minimally Immersed Legendrian Surfaces in Sasakian 5-manifolds"Kodai Math.Journal. 23巻3号. 358-375 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro Itoh: "Affine locally Symmetric Structures and Finiteness Theorems for Einstein-Weyl manifolds"Tokyo Journal Math.. 23巻1号. 37-49 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro Itoh: "Global Geometry of Sasakian Manifolds"Proceedings 4th Intern.Workshop of Diffi Geometry (Korea). 4巻. 1-7 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro Itoh: "Weyl Manifolds and the Morse Functional"Proceedings 4th Intern.Workshop of Diffi Geometry (Korea). 4巻. 9-17 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro, Itoh: "MInimally immersed Legendrian surfaces in Sasakian 5-manifolds"Kodai Math.Journal. 23. 358-375 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro, Itoh: "Affine locally symmetric structures and finiteness theorems for Einstein-Weyl manifolds"Tokyo Journal Math.. 23. 37-49 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro, Itoh: "Global geometry of Sasakian manifolds"Proc.4th Int.Workshop Diff.Geom.. 4. 1-7 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro, Itoh: "Weyl manifolds and the Morse functional"Proc.4th Int.Workshop Diff.Geom.. 4. 9-17 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Mitsuhiro Itoh: "Minimally Immersed Legendrian Surfaces in Sasakian 5-manifolds"Kodai Math.Journal. 23巻3号. 358-375 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Mitsuhiro Itoh: "Affine locally Symmetric Structures and Finiteness Theorems for Einstein-Weyl manifolds"Tokyo Journal Math.. 23巻1号. 37-49 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Mitsuhiro Itoh: "Global Geometry of Sasakian Manifolds"Proceedings 4th Intern. Workshop of Diff.Geometry (Korea). 4巻. 1-7 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Mitsuhiro Itoh: "Weyl Manifolds and the Morse Functional"Proceedings 4th Intern. Workshop of Diff.Geometry (Korea). 4巻. 9-17 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M,Itoh and T,Satou: "Self-Dual METRICS on 4-dimensional Circle Bundles"Nihonkai Mathematical Jornal. 10巻1号. 71-86 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] N,Honda and M.Itoh: "A Kummer type construction of self-dual metrics on the connected sum of four complex projectiv planes"Journal of the Mathemahical Society of Japan. 52巻1号. 139-160 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Mitsthiro Itoh: "Global Geometry of Sasavian Manifolds"Proceedings of 4th International Workshop of Differential Geometry. 掲載予定. (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Mitsthiro Itoh: "Weyl Manifolds and the Morse Functional"Proceedings of 4th International Workshop of Differential Geometry. 掲載予定. (2000)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-11-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi