• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Exact WKB analysis and microlocal analysis

Research Project

Project/Area Number 11440042
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

KAWAI Takahiro  Research Institute for Mathematical Sciences, Kyoto University, Professor, 数理解析研究所, 教授 (20027379)

Co-Investigator(Kenkyū-buntansha) TAKEI Yoshitsugu  Research Institute for Mathematical Sciences, Kyoto University, Associate Professor, 数理解析研究所, 助教授 (00212019)
AOKI Takashi  School of Science and Engineering, Kinki University, Professor, 理工学部, 教授 (80159285)
斎藤 恭司  京都大学, 数理解析研究所, 教授 (20012445)
室田 一雄  京都大学, 数理解析研究所, 教授 (50134466)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥7,300,000 (Direct Cost: ¥7,300,000)
Fiscal Year 2001: ¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2000: ¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 1999: ¥2,700,000 (Direct Cost: ¥2,700,000)
Keywordsexact WKB analysis / microlocal analysis / Stokes geometry / exact steepest descent path / exact steepest descent method / virtual turning point / infra-red divergence / natural boundaries / ストークス曲線 / ストークス幾何 / ボレル和 / 非断熱近似 / Borel変換 / 鞍点 / Landau-Zener / 断熱近似 / n-level / 鞍点法 / 最急降下路 / Borel和 / 積分表示 / 変わり点
Research Abstract

1°Concerning the Stokes geometry for higher order linear ordinary differential equations with a large parameter,
(1) we first made a concrete and detailed study of Laplace-type equations with the help of the ordinary steepest descent method ([AKT5]), and then by musing on the WKB-theoretic meaning of the obtained results reflectively from the viewpoint of the Borel resummation,
(2) we proposed in [AKT3] the exact steepest descent method that makes use of the newly invented notion "exact steepest descent paths" so that we may describe the Stokes geometry for general operators.
(3) Some concrete but delicate issues in the Stokes geometry are examined by the exact steepest descent method in [AkoT] and [KoT].
In view of the spiritual target of this project, the introduction of the exact steepest descent method into the exact WKB analysis is quite important, as it clearly exemplifies the complementary character of the exact WKB analysis and microlocal analysis, it shows that the global aspect o … More f the quantized Legendre transformation can be described in terms of the exact steepest descent paths.
2° Non-adiabatic transition probabilities for Landau-Zener type problems are calculated on the basis of microlocal analysis of operators with multiple characteristics ([AKT1]). Important in its own right is the concrete algorithm for detecting virtual turning points for the operators in question.
3° Microlocal structure of the S-matrix is studied ia [KS] when infra-red divergence is relevant.
4° Natural boundaries of solution of non-liner ordinary differential equations are studied in [K] from the viewpoint of WKB analysis. Microlocal study of natural boundaries of Dirichlet series was also made in [KStr].
5° Local theory of the exact WKB analysis for the infinite series of differential operators with a large parameter was developed in [AKKT] with the help of a quantized contact transformation, one of the basic notions in microlocal analysis.
6° [T1] constructed the exact WKB analysis for systems of differential equations, and we are currently (2002) trying to apply it to the study of higher order Painlev」 equations (Noumi equation etc.). Less

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (41 results)

All Other

All Publications (41 results)

  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the exact WKB analysis of operators admitting infinitely many phases"RIMS preprint. 1350. (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"RIMS preprint. 1331. (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "The Exact Steepest descent Method : A New Steepest Descent Method Based on the Exact WKB Analysis"RIMS preprint. 1373. (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method : a new method for the description of Stokes curves"J. Math. Phys.. 42. 3691-3713 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Can we find a new deformation of (SL_J) with respect to the parameters contained in (P_J) ?"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto Univ. Press). 205-208 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On a complete description of the Stokes geometry for higher order ordinary differential equations with a large parameter via integral representations"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto Univ. Press). 11-14 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, T.Koike, Y.Takei: "Vanishing of Stokes Curves"RIMS preprint. 1366. (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Kawai: "Natural boundaries revisited through differential equations, infinite order or non-linear"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear, Kyoto Univ. Press. 231-243 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Kawai, H.P.Stapp: "On infra-red singularities associated with QC phontons"RIMS preprint. 1356. (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Kawai, D.C.Struppa: "Overconvergence phenomena and grouping in exponential representation of solutions of linear differential equations of infinite order"Adv. in Math.. 161. 131-140 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Koike, Y.Takei: "The Effect of New Stokes Curves in the Exact Steepest Descent Method"RIMS preprint. 1367. (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y.Takei: "On a double turning point problem for systems of linear ordinary differential equations"

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y.Takei: "On an exact WKB approach to Ablowitz-Segur's connection problem for the second Painleve equation"ANZIAM J. Australian Math. Soc.. 44. 111-119 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Y.Takei: "An explicit description of the connection formula for the first Painleve equation"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto Univ. Press). 271-296 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, K.Kataoka, S.Yamazaki: "Construction of kernel functions of pseudodifferential operators of infinite order"Aktual'nii Problemi Matematicheskovo Analiza, (Rostov University Press). 28-40 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKKT]T. Aoki, T. Kawai, T. Koike and Y. Takei: "On the exact WKB analysis of operators admitting infinitely many phases"RIMS preprint. 1350. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKT1]T. Aoki, T. Kawai and Y. Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"RIMS preprint. 1331. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKT2]T. Aoki, T. Kawai and Y. Takei: "The Exact Steepest Descent Method : A New Steepest Descent Method Based on the Exact WKB Analysis"RIMS preprint. 1373. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKT3]T. Aoki, T. Kawai and Y. Takei: "On the exact steepest descent method : a new method for the description of Stokes curves"J. Math. Phys.. 42. .3691-3713 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKT4]T. Aoki, T. Kawai and Y. Takei: "Can we find a new deformation of (SL_J) with respect to the parameters contained in (P_J)?"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Liniear (Kyoto Univ. Press). .205-208 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKT5]T. Aoki, T. Kawai and Y. Takei: "On a complete description of the Stokes geometry for higher order ordinary differential equations with a large parameter via integral representations"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto Univ. Press). .11-14 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKoT]T. Aoki, T. Koike and Y. Takei: "Vanishing of Stokes Curves"RIMS preprint. 1366. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [K]T. Kawai: "Natural boundaries revisited through differential equations, infinite order or non-linear"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto Univ. Press). .231-243 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [KS]T. Kawai and H.P. Stapp: "On infra-red singularities associated with QC phontons"RIMS preprint. 1356. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [KStr]T. Kawai and D.C. Struppa: "Overconvergence phenomena and grouping in exponential representation of solutions of linear differential equations of infinite order"Adv. in Math.. 161. .131-140 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [KoT]T. Koike, and Y. Takei: "The Effect of New Stokes Curves in the Exact Steepest Descent Method"RIMS preprint. 1367. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [T1]Y. Takei: "On a double turning point problem for systems of linear ordinaryd ifferential equations"(Preprint).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [T2]Y. Takei: "On an exact WKB approach to Ablowitz-Segur's connection problem for the second Painleve equation"ANZIAM J. Australian Math. Soc.. 44. .111-119 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [T3]Y. Takei: "An explicit description of the connection formula for the first Painleve equation"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto Univ. Press). .271-296 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] [AKY]T. Aoki, K. Kataoka and S. Yamazaki: "Construction of kernel functions of pseudodifferential operators of infinite order, Aktual'nii Problemi Matematicheskovo Analiza"Rostov University Press. .28-40 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method -a new method for the description of Stokes curves"J. Math. Phys.. 42. 3691-3713 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Kawai, D.C.Struppa: "Overconvergence phenomena and grouping in exponential representation of solutions of linear differential equations of infinite order"Adv. in Mathematics. 161. 131-140 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"J. Phys. (A). (in press). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] KAWAI,Takahiro: "Overconvergence phenomena and grouping in exponential representation of solutions of linear differential equations of infinite order (with Daniele C.Struppa)"Advances in Mathematics, (2001). (in Press).

    • Related Report
      2000 Annual Research Report
  • [Publications] TAKEI,Yoshitsugu: "On an exact WKB approach to Ablowitz-Segur's connection problem for the second Painleve equation"ANZIAM J.Australian Math.Soc.. (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] AOKI,Takashi: "On the exact steepest descent method-a new method for the description of Stokes curves,(with T.Kawai and Y.Takei) RIMS preprint 1295 (2000)"J.Math.Phys.(2001). (to appear).

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Aoki,T.Kawai and Y.Takei: "On a complete description of the Stokes geometry for higher order ordinary differential equations with a large parameter via integral representations"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear, Kyoto Univ. Press. 11-14 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Aoki,T.Kawai and Y.Takei: "Can we find a new deformation of (SL_J) with respect to the parameters contained in (P_J)?"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear, Kyoto Univ. Press. 205-208 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kawai: "Natural boundaries revisited through differential equations, infinite order or non-linear"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear, Kyoto Univ. Press. 231-243 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] T.Kawai and Daniele C.Struppa: "Overconvergence phenomena and grouping in exponential representation of solutions of linear differential equations of infiite order"Adv.in Math.. (To appear).

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Takei: "An explicit description for the connection formula for the first Painleve equaiton"Toward the Exact WKB Analysis of Differential Equations,Linear or Non-Linear, Kyoto Univ. Press. 271-296 (2000)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi