• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of Algebraic groups and Lie Algebras and Applications

Research Project

Project/Area Number 11640008
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of Tsukuba

Principal Investigator

MORITA Jun  University of Tsukuba, Institute of Mathematics, Professr, 数学系, 教授 (20166416)

Co-Investigator(Kenkyū-buntansha) MIYASHITA Yoichi  Kagoshima University, Department of education, Professor, 教育学部, 教授 (00000795)
Project Period (FY) 1999 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2001: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2000: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 1999: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsKac-Moody groups / Kac-Moody algebra / Gauss decomposition / カッツ・ムーディ群 / ガウス分解 / 単純群 / 準結晶
Research Abstract

The existence of strong Gauss decompositions for general Kac-Moody groups has been proved. In the case of finite dimensional semisimple algebraic groups such a result was given before by V. Chernousov etc. In the infinite dimensional case, several ,new properties as well,as strong Gauss decompositions have been established. More explicitely, we let
G = a Kac-Moody group,
Z(G) = the center of G,
T = the standard maximal torus,
U = the standard maximal upper triangular unipotent subgroup,
V = the standard maximal lower triangular unipotent subgroup.
Then the following has been shown to be-true for every h[0x81b8(Shift-JIS)]T :
G=Z(G)[0x81be(Shift-JIS)][0x81be(Shift-JIS)]__<g[0x81b8(Shift-JIS)]G>g(VhU)g^<-1>.
Furthermore, using this, it has been proved that every noncentral element is able to be expressed as a product of two unipotent elements, which is a very strong result to study the group structure of a Kac-Moody group. As related topics, positive cones and semigroups have been discussed, and Matsumoto type presentations have been given for certain K-seniigroups. Also, some quasi-periodic structures have been studied as applications of algebraic group theory and algebraic number theory.

Report

(4 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • 1999 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] Jun Morita, Eugeue Plotkin: "Gauss decompositions of Kac-Moody groups"Communications in Algebra. 27. 465-475 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun Morita, Kiniko Sakamoto: "Shell structure of dodecagonal quasicrystals associated with root system F_4 and cyclofouic field Q(δ_<12>)"Communications in Algebra. 28. 255-263 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Robert Moody, Jun Morita: "Positivity for K_1 and K_2"Journal of Algebra. 229. 1-24 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tatsuya Kimijima, Jun Morita: "A certain algebraic construction of quasicrystals and their isomorphism classes"Journal of Physics A : Math.Gen. 33. 8483-8487 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun Morita, Engene Plotkin: "Prescribed Gauss decompositions for Kas-Moody groups over Fields"Rendiconti del Seminario Matenatice dela Universita di Padora. 106. 153-163 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 森田純: "Kac-Moody群講義(上智大学数学講究録44)"上智大学(数学教室). 120 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun Morita, Eugene Plotkin: "Gauss decompositions for Kac-Moody groups"Communications in Algebra. 27. 465-475 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun Morita, Kuniko Sakamoto: "Shell structure of dodecagonal quasicrystals associated with root system F_4 and cyclotomic field Q(ζ_<12> )"Communications in Algebra. 28. 256-263 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Robert Moody, Jun Morita: "Positivity for K_1 and K_2"Journal of Algebra. 229. 1-24 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tatsuya Kimijima, Jun Morita: "A certain algebraic construction of quasicrystals and their isomorphism classes"Journal of Physics A : Math. Gen.. 33. 8483-8487 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun Morita, Eugene Plotkin: "Prescribed gauss decompositions for Kac-Moody groups over fields"Rendiconti del Seminario Matematico della Universita di Padova. 106. 153-163 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun Morita: "Lectures on Kac-Moody groups"Sophia University Sophia Kokyuroku in Mathematics 44. 120 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Jun Morita, Eugene Plotkin: "Gauss decompositions of Kac-Moody groups"Communications in Algebra. 27(1). 465-475 (1999)

    • Related Report
      2001 Annual Research Report
  • [Publications] Jun Morita, Kuniko Sakamoto: "Shell structure of dodecagonal gaasicrystals associated with root system F_4 and cyclotomic field Q(ζ_<12>)"Communications in Algebra. 28(1). 255-263 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] Robert Moody, Jun Morita: "Positivity for K_1 and K_2"Journal of Algebra. 229. 1-24 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] Tatsuya Kimijima, Jun Morita: "A certain algebraic construction of quasicrystals and their isomorphism classes"Journal of Physics A : Math. Gen.. 33. 8483-8487 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] Jun Morita, Eugene Plotkin: "Prescribed Gauss decompositions for Kac-Moody groups over fields"Rendiconfi del Seminario Matematico de lla Universifa di Padova. 106. 153-163 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 森田 純: "Kac-Moody群講義(上智大学数学講究録 44)"上智大学(数学教室). 120 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] R.Moody and J.Morita: "Positivity for K_1 and K_2"Journal of Algebra. 229. 1-24 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] T.Kimijima and J.Morita: "A certain algebraic construction of quasicrystals and their isomorphism classes"Journal of Physics A : Math.Gen.. 33. 8483-8487 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Morita,E.Plotkin: "Gauss decompositions of Kac―Moody groups"Communications in Algebra. 27巻1号. 465-475 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] J.Morita,K.Sakamoto: "Shell structure of dodecagonal quasicrystals associated with root system F_4 and cyclotomic field Q(3R)"Communications in Algebra. 28巻1号. 255-263 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] R.V.Moody,J.Morita: "Positivity for K_1 and K_2"Journal of Algebra. (印刷中).

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi