• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Ring extensions and quotient rings

Research Project

Project/Area Number 11640014
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTOKYO GAKUGEI UNIVERSITY

Principal Investigator

YOSHIMI Tokuhiro  Tokyo Gakugei Univ., Faculty of Education, Professor, 教育学部, 教授 (00014811)

Co-Investigator(Kenkyū-buntansha) SEKIZAWA Masami  TOKYO GAKUGEI UNIVERSITY, Faculty of Education Professor, 教育学部, 教授 (80014835)
MIYACHI Jun-ichi  TOKYO GAKUGEI UNIVERSITY, Faculty of Education associate Professor, 教育学部, 助教授 (50209920)
MASAIKE Kanzo  TOKYO GAKUGEI UNIVERSITY, Faculty of Education Professor, 教育学部, 教授 (40015798)
IKEDA Yoshito  TOKYO GAKUGEI UNIVERSITY, Faculty of Education associate Professor, 教育学部, 助教授 (70014834)
TANAKA Yoshio  TOKYO GAKUGEI UNIVERSITY, Faculty of Education Professor, 教育学部, 教授 (90014810)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 2000: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 1999: ¥1,500,000 (Direct Cost: ¥1,500,000)
Keywordsquashi Frobenius eytension / artinian ring / noetherian ring / maximal quotient ring / module / full linear ring / カテゴリー / 射影的次元 / 商環 / 斜体 / 環拡大 / フロベニウス拡大 / 入射的加群
Research Abstract

It is shown that for a quasi-Frobenius extension A of a right non-singular ring B if A is a right self-injective ring, then so is B.An example of a Frobenius extension A/B such that A is a simple Artinian ring but B is not a self-injective ring is given. Let A be a quasi-Frobenius extension of B.It is shown that if B_B is U-Noetherian for a right B-module U, then A is V : =Hom_B(A, U)-Noetherian. it is also shown that if U_B is a right B-module which is faithful, injective and torsionless, then the quotient ring of A with respect to V_A is a quasi-Frobenius extension of the quotient ring of B with respect to U_B.
Let R be a right semi-hereditary ring with a maximal right quotient ring Q such that Q is a left flat epimorphism of R.If Q is a direct product of right full linear rings, then R is a direct product of rings whose maximal right quotient rings are full linear rings.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (21 results)

All Other

All Publications (21 results)

  • [Publications] Miyachi, jun-ichi: "Injective resolutions of noerherian rings and cogenerators"Proc. Amer. Math. Soc.. 128. 2233-2242 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Sekizawa, Masami: "On tangent sphere bundles with smallor large constant radius"Annals of Global Analysis and Geometry. 18. 207-219 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Sekizawa, Masami: "Three-dimensional conformally flat pseudo-symmetric spaces of constant type"Archivum Mathematigum (Brno). 36. 279-286 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Sekizawa, Masami: "On the scalar curvature of tangent sphere bundles with arbitrary constant radius"Bull. Greek Math. Sco.. 44. 17-30 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Tanaka, Yoshio: "Point-countable k-networks and maps"Q. and A. in General Topology. 17. 101-108 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Tanaka, Yoshio: "Theory of k-networks II"Q. and A. in General Topology. 19. 1-20 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Miyachi, Jun-ichi: "Injective resolutions of noetherian rings and cogenerators."Proc.Amer.Math.Soc.. 128. 2233-2242 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Sekizawa, Masami: "On tangent sphere bundles with small or large constant radius"Annals of Global Analysis and Geometry. 18. 207-219 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Sekizawa, Masami: "Three-dimensional conformally flat pseudo-symmetric spaces of constant type"Archivum Mathematigum(Brno). 36. 279-286 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Sekizawa, Masami: "On the scalar curvature of tangent sphere bundles with arbitrary constant radius"Bull.Greek Math.Soc.. 44. 17-30 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Tanaka, Yoshio: "Point-countable K-networks and maps"Q.and A.in General Topology. 17. 101-108 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Tanaka, Yoshio: "Theory of K-networks II"Q.and A.in Gneral Topology. 19. 1-20 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Jun-ichi Miyachi: "Injective resolutions of noetherian rings and cogenerators"Proc.Amer.Math.Soc.. 128・8. 2233-2242 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Sekizawa and N.Hashimoto: "Tree-dimnentional conformaly flat pseudo-symmetric spaces of constant type"Archivum mathematicum (Brno). 36. 279-286 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Sekizawa and O.Kowalski: "On tangent sphere boundles with small or large constant radius"Ann.Global Anal.Geom.. 18. 207-219 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] M.Sekizawa and O.Kowalski: "Geometry of tangent sphere bundles with artitrary constant radius"Proc.Symposium Contemporary mathematics. 219-228 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Y.Tanaka: "Theory of k-networks II"Q.and A.in General Topology. 19. 1-20 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] C.Liu,S.Masami,and Y.Tanaka: "Orderability of topological groups and biradical spaces"Q.and A.in General Topology. 19. 1-4 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] J.Li, S.Jiang and Y.Tanaka: "Point-countable k-networks and maps"Q and A in General Topology. 17. 101-108 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Yoshito Ikeda: "a-Strong networks,and quotient compact images of metric spaces"Q and A in General Topology. 17. 269-279 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Jun-ichi Miyachi: "Injective resolutions of noetherian rings and cogenerators"Proc.Amer.Math.Soc..

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi