• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

STUDY ON SINGULARITIES OF VARIETIES

Research Project

Project/Area Number 11640015
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTOKYO INSTITUTE OF TECHNOLOGY

Principal Investigator

KUROKAWA Nobushige (2000)  Graduate School of Science and Engineering TOKYO INSTITUTE OF TECHNOLOGY, Professor, 大学院・理工学研究科, 教授 (70114866)

石井 志保子 (1999)  東京工業大学, 大学院・理工学研究科・数学専攻, 教授 (60202933)

Co-Investigator(Kenkyū-buntansha) MIZUMOTO Shinichiro  Graduate School of Science and Engineering TOKYO INSTITUTE OF TECHNOLOGY, Assistant Professor, 大学院・理工学研究科, 教授 (90166033)
TSUJI Hajime  Graduate School of Science and Engineering TOKYO INSTITUTE OF TECHNOLOGY, Assistant Professor, 大学院・理工学研究科, 助教授 (30172000)
FUJITA Takao  Graduate School of Science and Engineering TOKYO INSTITUTE OF TECHNOLOGY, Professor, 大学院・理工学研究科, 教授 (40092324)
黒川 信重  東京工業大学, 大学院・理工学研究科, 教授 (70114866)
斎藤 秀司  東京工業大学, 大学院・理工学研究科, 教授 (50153804)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2000: ¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1999: ¥1,800,000 (Direct Cost: ¥1,800,000)
KeywordsZeta function / log-canonical singularity / index of singularity / exceptional singularity / modular L-function / Singularities / toric variety / index / Zariski decomposition / birational geometry
Research Abstract

We gave an estimation of the multiplicity of the principal series. We obtained basic properties of the spectra of categories and studied examples.
It was proved by Chen-Ishii that the set of the values of -K^2 for normal surface singularities has no accumulation points from above and has many accumulation points from below. We checked the closedness of this set in the real number field. The closedness is equivalent to the fact that every accumulation point is a value of -K^2 of a singular point. We proved that every accumulation point is the sum of finite number of the value of -K^2.
And non-closedness of the set was proved.
We proved the boundedness of the indices of isolated strictly log-canonical singularities of dimension 3 and also obtained all possible values of the indices.
We constructed counter examples of Reid's conjecture : hypersurface rational singularities are characterized by weights. As one of the consequences, we obtained simple K3 singularities which is not in the category of simple K3 singularities of famous 95 types.
We proved that for every hypersurface canonical singularity defined by a non-degenerate function there is a weight such that the singularity defined by the leading tern with respect to this weight is exceptional if and only if the original singularity is exceptional. So we can reduce the problem of exceptionality of the singularity into the weighted homogeneous case. We also proved that the number of the weights whose singularities are exceptional is finite.
We studied the order of zeros at the center of equations of modular L-functions. In particular we studied Rankin zta function corresponding to the pair of elliptic modular forms.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] 黒川信重,黒山人重,若山正人: "A formula for the multiplicity of the principal series in L^2(P\G)"Forum Mathematium 12. 12. 757-766 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 黒川信重,佐々木,田沼: "Spectra of categories"Proceeding of the Japan Academy. 75. 92-95 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 石井志保子: "The quotient of log-canonical singularities by finite groups"Advanced Studies in Pure Math.. 29. 135-161 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Hao Chen,石井志保子: "On-K^2 for normal surface singularities II"Int.J.Math.. 11. 1193-1202 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 石井志保子,泊昌孝: "Hypersurface non-rational singularities which lodes canonical from their Neurton boundaries"Math.Zeitschroft. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 石井志保子: "On toric image divisors"Comm.in Algebra. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 梅田享,黒川信重,中島さち子: "ゼータの世界"日本評論者. 234 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 加藤和也,黒川信重,斎藤毅: "Number Theory 1:Fermati dream"American Math.Society. 250 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] N.Kurokawa, H.kuroyama, M.wakayama: "A formula for the multiplicity of the principal serien in L_2(Γ/G)"Forum Matematicum. 12. 757-766 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] N.Kurokawa, R.Sasaki, H.Tanuma: "Spectra of categories."Proc. of the Japan Acad. 75. 92-95 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Ishii: "The quotient of log-canonical singularities by finite groups."Adv. Stu. in Pure Math. 29. 135-161 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Ishii, M.Tomari: "Hypersurface non-rational singularities which look canonical from their Newton boundaries. Zeitschrift Math."Mathematische Zeitschrift. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Hao Chen, S.Ishii: "On-K^1 for normal surface singularities II"Intern. J.Math.. 11(9). 1193-1202 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Ishii: "On toric image divisors."Comm. Alg.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Mizumoto: "Certain L-funcions at s=1/2."Acta Arithmetica. 88(1). 51-66 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] S.Mizumoto: "Special values of triple product L-functions and nearly holomorphic Eisenstein series."Abh. Math. Sem. Univ. Hamburg. 70. 191-210 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] 黒川信重,若山正人: "A formula for the multiplicity of the principal series in L^2 (Γ\G)"Forum Mathematicum 12. 12. 757-766 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 黒川信重,佐々木,田沼: "Spectra of categories"Proceedings of the Japan Academy. 75. 92-95 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] 加藤和也,黒川信重,斎藤毅: "Number Theory 1: Fermat's dream"American Math Society. 250 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] 梅田享,黒川信重,中島さち子: "ゼータの世界"日本評論社. 234 (1999)

    • Related Report
      2000 Annual Research Report
  • [Publications] Shihoko ISHII: "The minimal model theorem for divisors of toric varieties"Tohoku Math. J.. 51. 213-226 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Shihoko ISHII: "The quotient of log-canonical singularities by finite groups"Adv. Studies in Pure Math.. to appear.

    • Related Report
      1999 Annual Research Report
  • [Publications] S. ISHII & M.Tomari: "Hypersurface non-rational singularities which look like canonical from their Newton boundaries"Math. Zeit schrift. to appear.

    • Related Report
      1999 Annual Research Report
  • [Publications] Hajime Tsuji: "Existence and Applications of analytic Zariski decomposition"Trends in Math.Analysis and Geometry in Several Complex Variables. 253-271 (1999)

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi