• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arakelov geometry and its related topics

Research Project

Project/Area Number 11640024
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

MORIWAKI Atsushi  Kyoto University., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70191062)

Co-Investigator(Kenkyū-buntansha) YOSHIKAWA Ken-ichi  Tokyo University., Graduate School of Mathematical Sciences, Associate Professor, 数理科学研究科, 助教授 (20242810)
SAITO Masahiko  Kobe University., Faculty of Science Professor, 理学部, 助教授 (80183044)
ISHII Akira  Kyoto University., Graduate School of Technology, Lecturer, 大学院・工学研究科, 講師 (10252420)
清水 勇二  京都大学, 大学院・理学研究科, 講師 (80187468)
Project Period (FY) 1999 – 2000
Project Status Completed (Fiscal Year 2000)
Budget Amount *help
¥3,100,000 (Direct Cost: ¥3,100,000)
Fiscal Year 2000: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 1999: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsArakelov Geometry / Height function / Lang conjecture / Bogomolov Conjecture / Stable curve / Moduli space / Picard group / Fulton conjecture / モジュライ / ネフ因子 / アーベル多様体 / モーデル・ヴェイユ群 / ネロン・テート対 / キレン距離
Research Abstract

The main results of this project are (1) Distribution of rational points over a finitely generated field, and (2) The Picard group of the moduli space of stable curves and its cone.
(1) We considered the problems over an abelian variety and proved a generalization of Lang conjecture and Bogomolov conjecture. Let K be a finitely generated field over Q and A an abelian variety over K.Then, using a good height function due to the head investigator, we can define a height pairing < , > : A (F) × A (F) -> R, which is an extension of Neron-Tate height pairing over a number field (note that F is the algebraic closure of K). For x_1, ... , x_r ∈A (F), we denote det(<x_i, x_j>) by δ (x_1, ..., x_r) . Let Γ be a finite rank subgroup of A (F), and X a subvariety of A.Moreover, let {x_1, ... , x_n} be a Q-basis of Γ. Then, we obtained that if the set { x ∈ X(F)|δ(x_1, ..., x_n, x)≦ε }is Zariski dense in X for every positive number ε , then X is a translation of an abelian subvariety by an element of Γ_ {div}.
(2) Let X be a normal complete variety and U a Zariski open set of X.A Q-line bundle L on X is said to be nef over U if, for any complete curve C passing through U, the intersection number of L with C is non-negative. Let M_g be the moduli space of stable curves of genus g, and M_g^1 the Zariski open set consisting of stable curves with one node at most. Then, in terms of tautological classes on M_g, we determine the necessary and sufficient condition to guarantee that a Q-line bundle on M_g is nef over M_g^1. Using this, we can see that the cone generated by curves passing through M_g^1 is a rational polyhedra, and we can also describe extremal rays of the cone in a concrete way. We believe that this is a first step toward a Fulton conjecture concerning the Mori cone of M_g, n.

Report

(3 results)
  • 2000 Annual Research Report   Final Research Report Summary
  • 1999 Annual Research Report
  • Research Products

    (27 results)

All Other

All Publications (27 results)

  • [Publications] Atsushi Moriwaki: "The continuity of Deligne's pairing"International Mathematics Research Notices. 19. 1057-1066 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "Arithmetic height functions over finitely generated fields"Invent.math.. 11. 101-142 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "The canonical arithmetic height of subvarieties of an abelian variety over a finitely generated field"J.reine angew.Math.. 530. 33-54 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "A generalization of conjectures of Bogomolov and Lang over finitely generated fields"to appear in Duke Math.J.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "Nef divisors in codimension one on the moduli space of stable curves"to appear in Comp.Math.. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Math.Ann.. 317. 239-262 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "The continuity of Deligne's pairing"International Mathematics Research Notices. 19. 1057-1066 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki.: "Arithmetic height functions over finitely generated fields"Invent.math. 11. 101-142 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "The canonical arithmetic height of subvarieties of an abelian variety over a finitely generated field"J.reine angew.Math.. 539. 33-54 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "A generalization of conjectures of Bogomolov and Lang over finitely generated fields"Duke Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "Nef divisors in codimension one on the moduli space of stable curves"Comp.Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki (with Shu Kawaguchi: "Inequalities for semistable families of arithmetic varieties"J.Math.Kyoto Univ.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Masahiko Saito (with K.V.Nguen): "On Mordell-Weil lattices of nonhyperelliptic type"Dokl.Akad.Nauk. 364 5. 596-598 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Ken-Ichi Yoshikawa: "Discriminant of theta divisors and Quillen metrics"J.of Diff.Geom. 52. 73-115 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Math.Ann.. 317. 239-262 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2000 Final Research Report Summary
  • [Publications] Atsushi Moriwaki: "Arithmetic height functions over finitely generated fields"Invent.math.. 11. 101-142 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsushi Moriwaki: "The canonical arithmetic height of subvarieties of an abelian variety over a finitely generated field"J.reine angew.Math.. 530. 33-54 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsushi Moriwaki (with Shu Kawaguch): "Inequalities for semistable families of arithmetic varieties"to appear in J.Math.Kyoto Univ.. (発売予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsushi Moriwaki: "A generalization of conjectures of Bogomolov and Lang over finitely generated fields"to appear in Duke Math.J.. (発売予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsushi Moriwaki: "Nef divisors in codimension one on the moduli space of stable curves"to appear in Comp.Math.. (発売予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Math.Ann.. 317. 239-262 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Atsushi Moriwaki: "The continuity of Deligne's pairing"International Mathematics Research Notices. 19. 1057-1066 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Atsushi Moriwaki: "Arithmetic height functions over finitely generated fields"Invent.math.. (掲載予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] Atsushi Moriwaki,Shu Kawaguchi: "Inequalities for semistable families of arithmetic varieties"J.Math.Kyoto Univ.. (掲載予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] Masahiko Saito,K.V.Nguen: "On Mordell-Weil lattices of nonhyperelliptic type"Dokl.Akad.Nauk. 364・5. 596-598 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Ken-Ichi Yoshikawa: "Discriminant of theta divisors and Quillen metrics"Journal of Differential Geometry. (掲載予定).

    • Related Report
      1999 Annual Research Report
  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Math.Ann.. (掲載予定).

    • Related Report
      1999 Annual Research Report

URL: 

Published: 1999-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi